zebrad/components/inbound.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
//! The inbound service handles requests from Zebra's peers.
//!
//! It downloads and verifies gossiped blocks and mempool transactions,
//! when Zebra is close to the chain tip.
//!
//! It also responds to peer requests for blocks, transactions, and peer addresses.
use std::{
collections::HashSet,
future::Future,
pin::Pin,
sync::Arc,
task::{Context, Poll},
time::Duration,
};
use futures::{
future::{FutureExt, TryFutureExt},
stream::Stream,
};
use tokio::sync::oneshot::{self, error::TryRecvError};
use tower::{buffer::Buffer, timeout::Timeout, util::BoxService, Service, ServiceExt};
use zebra_network as zn;
use zebra_state as zs;
use zebra_chain::{
block::{self, Block},
serialization::ZcashSerialize,
transaction::UnminedTxId,
};
use zebra_consensus::router::RouterError;
use zebra_network::{AddressBook, InventoryResponse};
use zebra_node_services::mempool;
use crate::BoxError;
// Re-use the syncer timeouts for consistency.
use super::sync::{BLOCK_DOWNLOAD_TIMEOUT, BLOCK_VERIFY_TIMEOUT};
use InventoryResponse::*;
mod cached_peer_addr_response;
pub(crate) mod downloads;
use cached_peer_addr_response::CachedPeerAddrResponse;
#[cfg(test)]
mod tests;
use downloads::Downloads as BlockDownloads;
/// The maximum amount of time an inbound service response can take.
///
/// If the response takes longer than this time, it will be cancelled,
/// and the peer might be disconnected.
pub const MAX_INBOUND_RESPONSE_TIME: Duration = Duration::from_secs(5);
/// The number of bytes the [`Inbound`] service will queue in response to a single block or
/// transaction request, before ignoring any additional block or transaction IDs in that request.
///
/// This is the same as `zcashd`'s default send buffer limit:
/// <https://github.com/zcash/zcash/blob/829dd94f9d253bb705f9e194f13cb8ca8e545e1e/src/net.h#L84>
/// as used in `ProcessGetData()`:
/// <https://github.com/zcash/zcash/blob/829dd94f9d253bb705f9e194f13cb8ca8e545e1e/src/main.cpp#L6410-L6412>
pub const GETDATA_SENT_BYTES_LIMIT: usize = 1_000_000;
/// The maximum number of blocks the [`Inbound`] service will queue in response to a block request,
/// before ignoring any additional block IDs in that request.
///
/// This is the same as `zcashd`'s request limit:
/// <https://github.com/zcash/zcash/blob/829dd94f9d253bb705f9e194f13cb8ca8e545e1e/src/main.h#L108>
///
/// (Zebra's request limit is one block in transit per peer, because it fans out block requests to
/// many peers instead of just a few peers.)
pub const GETDATA_MAX_BLOCK_COUNT: usize = 16;
type BlockDownloadPeerSet =
Buffer<BoxService<zn::Request, zn::Response, zn::BoxError>, zn::Request>;
type State = Buffer<BoxService<zs::Request, zs::Response, zs::BoxError>, zs::Request>;
type Mempool = Buffer<BoxService<mempool::Request, mempool::Response, BoxError>, mempool::Request>;
type SemanticBlockVerifier = Buffer<
BoxService<zebra_consensus::Request, block::Hash, RouterError>,
zebra_consensus::Request,
>;
type GossipedBlockDownloads =
BlockDownloads<Timeout<BlockDownloadPeerSet>, Timeout<SemanticBlockVerifier>, State>;
/// The services used by the [`Inbound`] service.
pub struct InboundSetupData {
/// A shared list of peer addresses.
pub address_book: Arc<std::sync::Mutex<AddressBook>>,
/// A service that can be used to download gossiped blocks.
pub block_download_peer_set: BlockDownloadPeerSet,
/// A service that verifies downloaded blocks.
///
/// Given to `Inbound.block_downloads` after the required services are set up.
pub block_verifier: SemanticBlockVerifier,
/// A service that manages transactions in the memory pool.
pub mempool: Mempool,
/// A service that manages cached blockchain state.
pub state: State,
/// Allows efficient access to the best tip of the blockchain.
pub latest_chain_tip: zs::LatestChainTip,
}
/// Tracks the internal state of the [`Inbound`] service during setup.
pub enum Setup {
/// Waiting for service setup to complete.
///
/// All requests are ignored.
Pending {
// Configuration
//
/// The configured full verification concurrency limit.
full_verify_concurrency_limit: usize,
// Services
//
/// A oneshot channel used to receive required services,
/// after they are set up.
setup: oneshot::Receiver<InboundSetupData>,
},
/// Setup is complete.
///
/// All requests are answered.
Initialized {
// Services
//
/// An owned partial list of peer addresses used as a `GetAddr` response, and
/// a shared list of peer addresses used to periodically refresh the partial list.
///
/// Refreshed from the address book in `poll_ready` method
/// after [`CACHED_ADDRS_REFRESH_INTERVAL`](cached_peer_addr_response::CACHED_ADDRS_REFRESH_INTERVAL).
cached_peer_addr_response: CachedPeerAddrResponse,
/// A `futures::Stream` that downloads and verifies gossiped blocks.
block_downloads: Pin<Box<GossipedBlockDownloads>>,
/// A service that manages transactions in the memory pool.
mempool: Mempool,
/// A service that manages cached blockchain state.
state: State,
},
/// Temporary state used in the inbound service's internal initialization code.
///
/// If this state occurs outside the service initialization code, the service panics.
FailedInit,
/// Setup failed, because the setup channel permanently failed.
/// The service keeps returning readiness errors for every request.
FailedRecv {
/// The original channel error.
error: SharedRecvError,
},
}
/// A wrapper around `Arc<TryRecvError>` that implements `Error`.
#[derive(thiserror::Error, Debug, Clone)]
#[error(transparent)]
pub struct SharedRecvError(Arc<TryRecvError>);
impl From<TryRecvError> for SharedRecvError {
fn from(source: TryRecvError) -> Self {
Self(Arc::new(source))
}
}
/// Uses the node state to respond to inbound peer requests.
///
/// This service, wrapped in appropriate middleware, is passed to
/// `zebra_network::init` to respond to inbound peer requests.
///
/// The `Inbound` service is responsible for:
///
/// - supplying network data like peer addresses to other nodes;
/// - supplying chain data like blocks to other nodes;
/// - supplying mempool transactions to other nodes;
/// - receiving gossiped transactions; and
/// - receiving gossiped blocks.
///
/// Because the `Inbound` service is responsible for participating in the gossip
/// protocols used for transaction and block diffusion, there is a potential
/// overlap with the `ChainSync` and `Mempool` components.
///
/// The division of responsibility is that:
///
/// The `ChainSync` and `Mempool` components are *internally driven*,
/// periodically polling the network to check for new blocks or transactions.
///
/// The `Inbound` service is *externally driven*, responding to block gossip
/// by attempting to download and validate advertised blocks.
///
/// Gossiped transactions are forwarded to the mempool downloader,
/// which unifies polled and gossiped transactions into a single download list.
pub struct Inbound {
/// Provides service dependencies, if they are available.
///
/// Some services are unavailable until Zebra has completed setup.
setup: Setup,
}
impl Inbound {
/// Create a new inbound service.
///
/// Dependent services are sent via the `setup` channel after initialization.
pub fn new(
full_verify_concurrency_limit: usize,
setup: oneshot::Receiver<InboundSetupData>,
) -> Inbound {
Inbound {
setup: Setup::Pending {
full_verify_concurrency_limit,
setup,
},
}
}
/// Remove `self.setup`, temporarily replacing it with an invalid state.
fn take_setup(&mut self) -> Setup {
let mut setup = Setup::FailedInit;
std::mem::swap(&mut self.setup, &mut setup);
setup
}
}
impl Service<zn::Request> for Inbound {
type Response = zn::Response;
type Error = zn::BoxError;
type Future =
Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>> + Send + 'static>>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
// Check whether the setup is finished, but don't wait for it to
// become ready before reporting readiness. We expect to get it "soon",
// and reporting unreadiness might cause unwanted load-shedding, since
// the load-shed middleware is unable to distinguish being unready due
// to load from being unready while waiting on setup.
// Every setup variant handler must provide a result
let result;
self.setup = match self.take_setup() {
Setup::Pending {
full_verify_concurrency_limit,
mut setup,
} => match setup.try_recv() {
Ok(setup_data) => {
let InboundSetupData {
address_book,
block_download_peer_set,
block_verifier,
mempool,
state,
latest_chain_tip,
} = setup_data;
let cached_peer_addr_response = CachedPeerAddrResponse::new(address_book);
let block_downloads = Box::pin(BlockDownloads::new(
full_verify_concurrency_limit,
Timeout::new(block_download_peer_set, BLOCK_DOWNLOAD_TIMEOUT),
Timeout::new(block_verifier, BLOCK_VERIFY_TIMEOUT),
state.clone(),
latest_chain_tip,
));
result = Ok(());
Setup::Initialized {
cached_peer_addr_response,
block_downloads,
mempool,
state,
}
}
Err(TryRecvError::Empty) => {
// There's no setup data yet, so keep waiting for it.
//
// We could use Future::poll() to get a waker and return Poll::Pending here.
// But we want to drop excess requests during startup instead. Otherwise,
// the inbound service gets overloaded, and starts disconnecting peers.
result = Ok(());
Setup::Pending {
full_verify_concurrency_limit,
setup,
}
}
Err(error @ TryRecvError::Closed) => {
// Mark the service as failed, because setup failed
error!(?error, "inbound setup failed");
let error: SharedRecvError = error.into();
result = Err(error.clone().into());
Setup::FailedRecv { error }
}
},
// Make sure previous setups were left in a valid state
Setup::FailedInit => unreachable!("incomplete previous Inbound initialization"),
// If setup failed, report service failure
Setup::FailedRecv { error } => {
result = Err(error.clone().into());
Setup::FailedRecv { error }
}
// Clean up completed download tasks, ignoring their results
Setup::Initialized {
cached_peer_addr_response,
mut block_downloads,
mempool,
state,
} => {
// # Correctness
//
// Clear the stream but ignore the final Pending return value.
// If we returned Pending here, and there were no waiting block downloads,
// then inbound requests would wait for the next block download, and hang forever.
while let Poll::Ready(Some(_)) = block_downloads.as_mut().poll_next(cx) {}
result = Ok(());
Setup::Initialized {
cached_peer_addr_response,
block_downloads,
mempool,
state,
}
}
};
// Make sure we're leaving the setup in a valid state
if matches!(self.setup, Setup::FailedInit) {
unreachable!("incomplete Inbound initialization after poll_ready state handling");
}
// TODO:
// * do we want to propagate backpressure from the download queue or its outbound network?
// currently, the download queue waits for the outbound network in the download future,
// and drops new requests after it reaches a hard-coded limit. This is the
// "load shed directly" pattern from #1618.
// * currently, the state service is always ready, unless its buffer is full.
// So we might also want to propagate backpressure from its buffer.
// * poll_ready needs to be implemented carefully, to avoid hangs or deadlocks.
// See #1593 for details.
Poll::Ready(result)
}
/// Call the inbound service.
///
/// Errors indicate that the peer has done something wrong or unexpected,
/// and will cause callers to disconnect from the remote peer.
#[instrument(name = "inbound", skip(self, req))]
fn call(&mut self, req: zn::Request) -> Self::Future {
let (cached_peer_addr_response, block_downloads, mempool, state) = match &mut self.setup {
Setup::Initialized {
cached_peer_addr_response,
block_downloads,
mempool,
state,
} => (cached_peer_addr_response, block_downloads, mempool, state),
_ => {
debug!("ignoring request from remote peer during setup");
return async { Ok(zn::Response::Nil) }.boxed();
}
};
match req {
zn::Request::Peers => {
// # Security
//
// We truncate the list to not reveal our entire peer set in one call.
// But we don't monitor repeated requests and the results are shuffled,
// a crawler could just send repeated queries and get the full list.
//
// # Correctness
//
// If the address book is busy, try again inside the future. If it can't be locked
// twice, ignore the request.
cached_peer_addr_response.try_refresh();
let response = cached_peer_addr_response.value();
async move {
Ok(response)
}.boxed()
}
zn::Request::BlocksByHash(hashes) => {
// We return an available or missing response to each inventory request,
// unless the request is empty, or it reaches a response limit.
if hashes.is_empty() {
return async { Ok(zn::Response::Nil) }.boxed();
}
let state = state.clone();
async move {
let mut blocks: Vec<InventoryResponse<Arc<Block>, block::Hash>> = Vec::new();
let mut total_size = 0;
// Ignore any block hashes past the response limit.
// This saves us expensive database lookups.
for &hash in hashes.iter().take(GETDATA_MAX_BLOCK_COUNT) {
// We check the limit after including at least one block, so that we can
// send blocks greater than 1 MB (but only one at a time)
if total_size >= GETDATA_SENT_BYTES_LIMIT {
break;
}
let response = state.clone().ready().await?.call(zs::Request::Block(hash.into())).await?;
// Add the block responses to the list, while updating the size limit.
//
// If there was a database error, return the error,
// and stop processing further chunks.
match response {
zs::Response::Block(Some(block)) => {
// If checking the serialized size of the block performs badly,
// return the size from the state using a wrapper type.
total_size += block.zcash_serialized_size();
blocks.push(Available(block))
},
// We don't need to limit the size of the missing block IDs list,
// because it is already limited to the size of the getdata request
// sent by the peer. (Their content and encodings are the same.)
zs::Response::Block(None) => blocks.push(Missing(hash)),
_ => unreachable!("wrong response from state"),
}
}
// The network layer handles splitting this response into multiple `block`
// messages, and a `notfound` message if needed.
Ok(zn::Response::Blocks(blocks))
}.boxed()
}
zn::Request::TransactionsById(req_tx_ids) => {
// We return an available or missing response to each inventory request,
// unless the request is empty, or it reaches a response limit.
if req_tx_ids.is_empty() {
return async { Ok(zn::Response::Nil) }.boxed();
}
let request = mempool::Request::TransactionsById(req_tx_ids.clone());
mempool.clone().oneshot(request).map_ok(move |resp| {
let mut total_size = 0;
let transactions = match resp {
mempool::Response::Transactions(transactions) => transactions,
_ => unreachable!("Mempool component should always respond to a `TransactionsById` request with a `Transactions` response"),
};
// Work out which transaction IDs were missing.
let available_tx_ids: HashSet<UnminedTxId> = transactions.iter().map(|tx| tx.id).collect();
// We don't need to limit the size of the missing transaction IDs list,
// because it is already limited to the size of the getdata request
// sent by the peer. (Their content and encodings are the same.)
let missing = req_tx_ids.into_iter().filter(|tx_id| !available_tx_ids.contains(tx_id)).map(Missing);
// If we skip sending some transactions because the limit has been reached,
// they aren't reported as missing. This matches `zcashd`'s behaviour:
// <https://github.com/zcash/zcash/blob/829dd94f9d253bb705f9e194f13cb8ca8e545e1e/src/main.cpp#L6410-L6412>
let available = transactions.into_iter().take_while(|tx| {
// We check the limit after including the transaction,
// so that we can send transactions greater than 1 MB
// (but only one at a time)
let within_limit = total_size < GETDATA_SENT_BYTES_LIMIT;
total_size += tx.size;
within_limit
}).map(Available);
// The network layer handles splitting this response into multiple `tx`
// messages, and a `notfound` message if needed.
zn::Response::Transactions(available.chain(missing).collect())
}).boxed()
}
// Find* responses are already size-limited by the state.
zn::Request::FindBlocks { known_blocks, stop } => {
let request = zs::Request::FindBlockHashes { known_blocks, stop };
state.clone().oneshot(request).map_ok(|resp| match resp {
zs::Response::BlockHashes(hashes) if hashes.is_empty() => zn::Response::Nil,
zs::Response::BlockHashes(hashes) => zn::Response::BlockHashes(hashes),
_ => unreachable!("zebra-state should always respond to a `FindBlockHashes` request with a `BlockHashes` response"),
})
.boxed()
}
zn::Request::FindHeaders { known_blocks, stop } => {
let request = zs::Request::FindBlockHeaders { known_blocks, stop };
state.clone().oneshot(request).map_ok(|resp| match resp {
zs::Response::BlockHeaders(headers) if headers.is_empty() => zn::Response::Nil,
zs::Response::BlockHeaders(headers) => zn::Response::BlockHeaders(headers),
_ => unreachable!("zebra-state should always respond to a `FindBlockHeaders` request with a `BlockHeaders` response"),
})
.boxed()
}
zn::Request::PushTransaction(transaction) => {
mempool
.clone()
.oneshot(mempool::Request::Queue(vec![transaction.into()]))
// The response just indicates if processing was queued or not; ignore it
.map_ok(|_resp| zn::Response::Nil)
.boxed()
}
zn::Request::AdvertiseTransactionIds(transactions) => {
let transactions = transactions.into_iter().map(Into::into).collect();
mempool
.clone()
.oneshot(mempool::Request::Queue(transactions))
// The response just indicates if processing was queued or not; ignore it
.map_ok(|_resp| zn::Response::Nil)
.boxed()
}
zn::Request::AdvertiseBlock(hash) => {
block_downloads.download_and_verify(hash);
async { Ok(zn::Response::Nil) }.boxed()
}
// The size of this response is limited by the `Connection` state machine in the network layer
zn::Request::MempoolTransactionIds => {
mempool.clone().oneshot(mempool::Request::TransactionIds).map_ok(|resp| match resp {
mempool::Response::TransactionIds(transaction_ids) if transaction_ids.is_empty() => zn::Response::Nil,
mempool::Response::TransactionIds(transaction_ids) => zn::Response::TransactionIds(transaction_ids.into_iter().collect()),
_ => unreachable!("Mempool component should always respond to a `TransactionIds` request with a `TransactionIds` response"),
})
.boxed()
}
zn::Request::Ping(_) => {
unreachable!("ping requests are handled internally");
}
}
}
}