zebra_network/peer/connection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
//! Zebra's per-peer connection state machine.
//!
//! Maps the external Zcash/Bitcoin protocol to Zebra's internal request/response
//! protocol.
//!
//! This module contains a lot of undocumented state, assumptions and invariants.
//! And it's unclear if these assumptions match the `zcashd` implementation.
//! It should be refactored into a cleaner set of request/response pairs (#1515).
use std::{borrow::Cow, collections::HashSet, fmt, pin::Pin, sync::Arc, time::Instant};
use futures::{future::Either, prelude::*};
use rand::{seq::SliceRandom, thread_rng, Rng};
use tokio::time::{sleep, Sleep};
use tower::{Service, ServiceExt};
use tracing_futures::Instrument;
use zebra_chain::{
block::{self, Block},
serialization::SerializationError,
transaction::{UnminedTx, UnminedTxId},
};
use crate::{
constants::{
self, MAX_ADDRS_IN_MESSAGE, MAX_OVERLOAD_DROP_PROBABILITY, MIN_OVERLOAD_DROP_PROBABILITY,
OVERLOAD_PROTECTION_INTERVAL, PEER_ADDR_RESPONSE_LIMIT,
},
meta_addr::MetaAddr,
peer::{
connection::peer_tx::PeerTx, error::AlreadyErrored, ClientRequest, ClientRequestReceiver,
ConnectionInfo, ErrorSlot, InProgressClientRequest, MustUseClientResponseSender, PeerError,
SharedPeerError,
},
peer_set::ConnectionTracker,
protocol::{
external::{types::Nonce, InventoryHash, Message},
internal::{InventoryResponse, Request, Response},
},
BoxError, MAX_TX_INV_IN_SENT_MESSAGE,
};
use InventoryResponse::*;
mod peer_tx;
#[cfg(test)]
mod tests;
#[derive(Debug)]
pub(super) enum Handler {
/// Indicates that the handler has finished processing the request.
/// An error here is scoped to the request.
Finished(Result<Response, PeerError>),
Ping(Nonce),
Peers,
FindBlocks,
FindHeaders,
BlocksByHash {
pending_hashes: HashSet<block::Hash>,
blocks: Vec<Arc<Block>>,
},
TransactionsById {
pending_ids: HashSet<UnminedTxId>,
transactions: Vec<UnminedTx>,
},
MempoolTransactionIds,
}
impl fmt::Display for Handler {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&match self {
Handler::Finished(Ok(response)) => format!("Finished({response})"),
Handler::Finished(Err(error)) => format!("Finished({error})"),
Handler::Ping(_) => "Ping".to_string(),
Handler::Peers => "Peers".to_string(),
Handler::FindBlocks => "FindBlocks".to_string(),
Handler::FindHeaders => "FindHeaders".to_string(),
Handler::BlocksByHash {
pending_hashes,
blocks,
} => format!(
"BlocksByHash {{ pending_hashes: {}, blocks: {} }}",
pending_hashes.len(),
blocks.len()
),
Handler::TransactionsById {
pending_ids,
transactions,
} => format!(
"TransactionsById {{ pending_ids: {}, transactions: {} }}",
pending_ids.len(),
transactions.len()
),
Handler::MempoolTransactionIds => "MempoolTransactionIds".to_string(),
})
}
}
impl Handler {
/// Returns the Zebra internal handler type as a string.
pub fn command(&self) -> Cow<'static, str> {
match self {
Handler::Finished(Ok(response)) => format!("Finished({})", response.command()).into(),
Handler::Finished(Err(error)) => format!("Finished({})", error.kind()).into(),
Handler::Ping(_) => "Ping".into(),
Handler::Peers => "Peers".into(),
Handler::FindBlocks { .. } => "FindBlocks".into(),
Handler::FindHeaders { .. } => "FindHeaders".into(),
Handler::BlocksByHash { .. } => "BlocksByHash".into(),
Handler::TransactionsById { .. } => "TransactionsById".into(),
Handler::MempoolTransactionIds => "MempoolTransactionIds".into(),
}
}
/// Try to handle `msg` as a response to a client request, possibly consuming
/// it in the process.
///
/// This function is where we statefully interpret Bitcoin/Zcash messages
/// into responses to messages in the internal request/response protocol.
/// This conversion is done by a sequence of (request, message) match arms,
/// each of which contains the conversion logic for that pair.
///
/// Taking ownership of the message means that we can pass ownership of its
/// contents to responses without additional copies. If the message is not
/// interpretable as a response, we return ownership to the caller.
///
/// Unexpected messages are left unprocessed, and may be rejected later.
///
/// `addr` responses are limited to avoid peer set takeover. Any excess
/// addresses are stored in `cached_addrs`.
fn process_message(
&mut self,
msg: Message,
cached_addrs: &mut Vec<MetaAddr>,
) -> Option<Message> {
let mut ignored_msg = None;
// TODO: can this be avoided?
let tmp_state = std::mem::replace(self, Handler::Finished(Ok(Response::Nil)));
debug!(handler = %tmp_state, %msg, "received peer response to Zebra request");
*self = match (tmp_state, msg) {
(Handler::Ping(req_nonce), Message::Pong(rsp_nonce)) => {
if req_nonce == rsp_nonce {
Handler::Finished(Ok(Response::Nil))
} else {
Handler::Ping(req_nonce)
}
}
(Handler::Peers, Message::Addr(new_addrs)) => {
// Security: This method performs security-sensitive operations, see its comments
// for details.
let response_addrs =
Handler::update_addr_cache(cached_addrs, &new_addrs, PEER_ADDR_RESPONSE_LIMIT);
debug!(
new_addrs = new_addrs.len(),
response_addrs = response_addrs.len(),
remaining_addrs = cached_addrs.len(),
PEER_ADDR_RESPONSE_LIMIT,
"responding to Peers request using new and cached addresses",
);
Handler::Finished(Ok(Response::Peers(response_addrs)))
}
// `zcashd` returns requested transactions in a single batch of messages.
// Other transaction or non-transaction messages can come before or after the batch.
// After the transaction batch, `zcashd` sends `notfound` if any transactions are missing:
// https://github.com/zcash/zcash/blob/e7b425298f6d9a54810cb7183f00be547e4d9415/src/main.cpp#L5617
(
Handler::TransactionsById {
mut pending_ids,
mut transactions,
},
Message::Tx(transaction),
) => {
// assumptions:
// - the transaction messages are sent in a single continuous batch
// - missing transactions are silently skipped
// (there is no `notfound` message at the end of the batch)
if pending_ids.remove(&transaction.id) {
// we are in the middle of the continuous transaction messages
transactions.push(transaction);
} else {
// We got a transaction we didn't ask for. If the caller doesn't know any of the
// transactions, they should have sent a `notfound` with all the hashes, rather
// than an unsolicited transaction.
//
// So either:
// 1. The peer implements the protocol badly, skipping `notfound`.
// We should cancel the request, so we don't hang waiting for transactions
// that will never arrive.
// 2. The peer sent an unsolicited transaction.
// We should ignore the transaction, and wait for the actual response.
//
// We end the request, so we don't hang on bad peers (case 1). But we keep the
// connection open, so the inbound service can process transactions from good
// peers (case 2).
ignored_msg = Some(Message::Tx(transaction));
}
if ignored_msg.is_some() && transactions.is_empty() {
// If we didn't get anything we wanted, retry the request.
let missing_transaction_ids = pending_ids.into_iter().map(Into::into).collect();
Handler::Finished(Err(PeerError::NotFoundResponse(missing_transaction_ids)))
} else if pending_ids.is_empty() || ignored_msg.is_some() {
// If we got some of what we wanted, let the internal client know.
let available = transactions.into_iter().map(InventoryResponse::Available);
let missing = pending_ids.into_iter().map(InventoryResponse::Missing);
Handler::Finished(Ok(Response::Transactions(
available.chain(missing).collect(),
)))
} else {
// Keep on waiting for more.
Handler::TransactionsById {
pending_ids,
transactions,
}
}
}
// `zcashd` peers actually return this response
(
Handler::TransactionsById {
pending_ids,
transactions,
},
Message::NotFound(missing_invs),
) => {
// assumptions:
// - the peer eventually returns a transaction or a `notfound` entry
// for each hash
// - all `notfound` entries are contained in a single message
// - the `notfound` message comes after the transaction messages
//
// If we're in sync with the peer, then the `notfound` should contain the remaining
// hashes from the handler. If we're not in sync with the peer, we should return
// what we got so far.
let missing_transaction_ids: HashSet<_> = transaction_ids(&missing_invs).collect();
if missing_transaction_ids != pending_ids {
trace!(?missing_invs, ?missing_transaction_ids, ?pending_ids);
// if these errors are noisy, we should replace them with debugs
debug!("unexpected notfound message from peer: all remaining transaction hashes should be listed in the notfound. Using partial received transactions as the peer response");
}
if missing_transaction_ids.len() != missing_invs.len() {
trace!(?missing_invs, ?missing_transaction_ids, ?pending_ids);
debug!("unexpected notfound message from peer: notfound contains duplicate hashes or non-transaction hashes. Using partial received transactions as the peer response");
}
if transactions.is_empty() {
// If we didn't get anything we wanted, retry the request.
let missing_transaction_ids = pending_ids.into_iter().map(Into::into).collect();
Handler::Finished(Err(PeerError::NotFoundResponse(missing_transaction_ids)))
} else {
// If we got some of what we wanted, let the internal client know.
let available = transactions.into_iter().map(InventoryResponse::Available);
let missing = pending_ids.into_iter().map(InventoryResponse::Missing);
Handler::Finished(Ok(Response::Transactions(
available.chain(missing).collect(),
)))
}
}
// `zcashd` returns requested blocks in a single batch of messages.
// Other blocks or non-blocks messages can come before or after the batch.
// `zcashd` silently skips missing blocks, rather than sending a final `notfound` message.
// https://github.com/zcash/zcash/blob/e7b425298f6d9a54810cb7183f00be547e4d9415/src/main.cpp#L5523
(
Handler::BlocksByHash {
mut pending_hashes,
mut blocks,
},
Message::Block(block),
) => {
// assumptions:
// - the block messages are sent in a single continuous batch
// - missing blocks are silently skipped
// (there is no `notfound` message at the end of the batch)
if pending_hashes.remove(&block.hash()) {
// we are in the middle of the continuous block messages
blocks.push(block);
} else {
// We got a block we didn't ask for.
//
// So either:
// 1. The response is for a previously cancelled block request.
// We should treat that block as an inbound gossiped block,
// and wait for the actual response.
// 2. The peer doesn't know any of the blocks we asked for.
// We should cancel the request, so we don't hang waiting for blocks that
// will never arrive.
// 3. The peer sent an unsolicited block.
// We should treat that block as an inbound gossiped block,
// and wait for the actual response.
//
// We ignore the message, so we don't desynchronize with the peer. This happens
// when we cancel a request and send a second different request, but receive a
// response for the first request. If we ended the request then, we could send
// a third request to the peer, and end up having to end that request as well
// when the response for the second request arrives.
//
// Ignoring the message gives us a chance to synchronize back to the correct
// request. If that doesn't happen, this request times out.
//
// In case 2, if peers respond with a `notfound` message,
// the cascading errors don't happen. The `notfound` message cancels our request,
// and we know we are in sync with the peer.
//
// Zebra sends `notfound` in response to block requests, but `zcashd` doesn't.
// So we need this message workaround, and the related inventory workarounds.
ignored_msg = Some(Message::Block(block));
}
if pending_hashes.is_empty() {
// If we got everything we wanted, let the internal client know.
let available = blocks.into_iter().map(InventoryResponse::Available);
Handler::Finished(Ok(Response::Blocks(available.collect())))
} else {
// Keep on waiting for all the blocks we wanted, until we get them or time out.
Handler::BlocksByHash {
pending_hashes,
blocks,
}
}
}
// peers are allowed to return this response, but `zcashd` never does
(
Handler::BlocksByHash {
pending_hashes,
blocks,
},
Message::NotFound(missing_invs),
) => {
// assumptions:
// - the peer eventually returns a block or a `notfound` entry
// for each hash
// - all `notfound` entries are contained in a single message
// - the `notfound` message comes after the block messages
//
// If we're in sync with the peer, then the `notfound` should contain the remaining
// hashes from the handler. If we're not in sync with the peer, we should return
// what we got so far, and log an error.
let missing_blocks: HashSet<_> = block_hashes(&missing_invs).collect();
if missing_blocks != pending_hashes {
trace!(?missing_invs, ?missing_blocks, ?pending_hashes);
// if these errors are noisy, we should replace them with debugs
debug!("unexpected notfound message from peer: all remaining block hashes should be listed in the notfound. Using partial received blocks as the peer response");
}
if missing_blocks.len() != missing_invs.len() {
trace!(?missing_invs, ?missing_blocks, ?pending_hashes);
debug!("unexpected notfound message from peer: notfound contains duplicate hashes or non-block hashes. Using partial received blocks as the peer response");
}
if blocks.is_empty() {
// If we didn't get anything we wanted, retry the request.
let missing_block_hashes = pending_hashes.into_iter().map(Into::into).collect();
Handler::Finished(Err(PeerError::NotFoundResponse(missing_block_hashes)))
} else {
// If we got some of what we wanted, let the internal client know.
let available = blocks.into_iter().map(InventoryResponse::Available);
let missing = pending_hashes.into_iter().map(InventoryResponse::Missing);
Handler::Finished(Ok(Response::Blocks(available.chain(missing).collect())))
}
}
// TODO:
// - use `any(inv)` rather than `all(inv)`?
(Handler::FindBlocks, Message::Inv(items))
if items
.iter()
.all(|item| matches!(item, InventoryHash::Block(_))) =>
{
Handler::Finished(Ok(Response::BlockHashes(
block_hashes(&items[..]).collect(),
)))
}
(Handler::FindHeaders, Message::Headers(headers)) => {
Handler::Finished(Ok(Response::BlockHeaders(headers)))
}
(Handler::MempoolTransactionIds, Message::Inv(items))
if items.iter().all(|item| item.unmined_tx_id().is_some()) =>
{
Handler::Finished(Ok(Response::TransactionIds(
transaction_ids(&items).collect(),
)))
}
// By default, messages are not responses.
(state, msg) => {
trace!(?msg, "did not interpret message as response");
ignored_msg = Some(msg);
state
}
};
ignored_msg
}
/// Adds `new_addrs` to the `cached_addrs` cache, then takes and returns `response_size`
/// addresses from that cache.
///
/// `cached_addrs` can be empty if the cache is empty. `new_addrs` can be empty or `None` if
/// there are no new addresses. `response_size` can be zero or `None` if there is no response
/// needed.
fn update_addr_cache<'new>(
cached_addrs: &mut Vec<MetaAddr>,
new_addrs: impl IntoIterator<Item = &'new MetaAddr>,
response_size: impl Into<Option<usize>>,
) -> Vec<MetaAddr> {
// # Peer Set Reliability
//
// Newly received peers are added to the cache, so that we can use them if the connection
// doesn't respond to our getaddr requests.
//
// Add the new addresses to the end of the cache.
cached_addrs.extend(new_addrs);
// # Security
//
// We limit how many peer addresses we take from each peer, so that our address book
// and outbound connections aren't controlled by a single peer (#1869). We randomly select
// peers, so the remote peer can't control which addresses we choose by changing the order
// in the messages they send.
let response_size = response_size.into().unwrap_or_default();
let mut temp_cache = Vec::new();
std::mem::swap(cached_addrs, &mut temp_cache);
// The response is fully shuffled, remaining is partially shuffled.
let (response, remaining) = temp_cache.partial_shuffle(&mut thread_rng(), response_size);
// # Security
//
// The cache size is limited to avoid memory denial of service.
//
// It's ok to just partially shuffle the cache, because it doesn't actually matter which
// peers we drop. Having excess peers is rare, because most peers only send one large
// unsolicited peer message when they first connect.
*cached_addrs = remaining.to_vec();
cached_addrs.truncate(MAX_ADDRS_IN_MESSAGE);
response.to_vec()
}
}
#[derive(Debug)]
#[must_use = "AwaitingResponse.tx.send() must be called before drop"]
pub(super) enum State {
/// Awaiting a client request or a peer message.
AwaitingRequest,
/// Awaiting a peer message we can interpret as a response to a client request.
AwaitingResponse {
handler: Handler,
tx: MustUseClientResponseSender,
span: tracing::Span,
},
/// A failure has occurred and we are shutting down the connection.
Failed,
}
impl fmt::Display for State {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&match self {
State::AwaitingRequest => "AwaitingRequest".to_string(),
State::AwaitingResponse { handler, .. } => {
format!("AwaitingResponse({handler})")
}
State::Failed => "Failed".to_string(),
})
}
}
impl State {
/// Returns the Zebra internal state as a string.
pub fn command(&self) -> Cow<'static, str> {
match self {
State::AwaitingRequest => "AwaitingRequest".into(),
State::AwaitingResponse { handler, .. } => {
format!("AwaitingResponse({})", handler.command()).into()
}
State::Failed => "Failed".into(),
}
}
}
/// The outcome of mapping an inbound [`Message`] to a [`Request`].
#[derive(Clone, Debug, Eq, PartialEq)]
#[must_use = "inbound messages must be handled"]
pub enum InboundMessage {
/// The message was mapped to an inbound [`Request`].
AsRequest(Request),
/// The message was consumed by the mapping method.
///
/// For example, it could be cached, treated as an error,
/// or an internally handled [`Message::Ping`].
Consumed,
/// The message was not used by the inbound message handler.
Unused,
}
impl From<Request> for InboundMessage {
fn from(request: Request) -> Self {
InboundMessage::AsRequest(request)
}
}
/// The channels, services, and associated state for a peer connection.
pub struct Connection<S, Tx>
where
Tx: Sink<Message, Error = SerializationError> + Unpin,
{
/// The metadata for the connected peer `service`.
///
/// This field is used for debugging.
pub connection_info: Arc<ConnectionInfo>,
/// The state of this connection's current request or response.
pub(super) state: State,
/// A timeout for a client request. This is stored separately from
/// State so that we can move the future out of it independently of
/// other state handling.
pub(super) request_timer: Option<Pin<Box<Sleep>>>,
/// Unused peers from recent `addr` or `addrv2` messages from this peer.
/// Also holds the initial addresses sent in `version` messages, or guessed from the remote IP.
///
/// When peers send solicited or unsolicited peer advertisements, Zebra puts them in this cache.
///
/// When Zebra's components request peers, some cached peers are randomly selected,
/// consumed, and returned as a modified response. This works around `zcashd`'s address
/// response rate-limit.
///
/// The cache size is limited to avoid denial of service attacks.
pub(super) cached_addrs: Vec<MetaAddr>,
/// The `inbound` service, used to answer requests from this connection's peer.
pub(super) svc: S,
/// A channel for requests that Zebra's internal services want to send to remote peers.
///
/// This channel accepts [`Request`]s, and produces [`InProgressClientRequest`]s.
pub(super) client_rx: ClientRequestReceiver,
/// A slot for an error shared between the Connection and the Client that uses it.
///
/// `None` unless the connection or client have errored.
pub(super) error_slot: ErrorSlot,
/// A channel for sending Zcash messages to the connected peer.
///
/// This channel accepts [`Message`]s.
///
/// The corresponding peer message receiver is passed to [`Connection::run`].
pub(super) peer_tx: PeerTx<Tx>,
/// A connection tracker that reduces the open connection count when dropped.
/// Used to limit the number of open connections in Zebra.
///
/// This field does nothing until it is dropped.
///
/// # Security
///
/// If this connection tracker or `Connection`s are leaked,
/// the number of active connections will appear higher than it actually is.
/// If enough connections leak, Zebra will stop making new connections.
#[allow(dead_code)]
pub(super) connection_tracker: ConnectionTracker,
/// The metrics label for this peer. Usually the remote IP and port.
pub(super) metrics_label: String,
/// The state for this peer, when the metrics were last updated.
pub(super) last_metrics_state: Option<Cow<'static, str>>,
/// The time of the last overload error response from the inbound
/// service to a request from this connection,
/// or None if this connection hasn't yet received an overload error.
last_overload_time: Option<Instant>,
}
impl<S, Tx> fmt::Debug for Connection<S, Tx>
where
Tx: Sink<Message, Error = SerializationError> + Unpin,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// skip the channels, they don't tell us anything useful
f.debug_struct(std::any::type_name::<Connection<S, Tx>>())
.field("connection_info", &self.connection_info)
.field("state", &self.state)
.field("request_timer", &self.request_timer)
.field("cached_addrs", &self.cached_addrs.len())
.field("error_slot", &self.error_slot)
.field("metrics_label", &self.metrics_label)
.field("last_metrics_state", &self.last_metrics_state)
.field("last_overload_time", &self.last_overload_time)
.finish()
}
}
impl<S, Tx> Connection<S, Tx>
where
Tx: Sink<Message, Error = SerializationError> + Unpin,
{
/// Return a new connection from its channels, services, shared state, and metadata.
pub(crate) fn new(
inbound_service: S,
client_rx: futures::channel::mpsc::Receiver<ClientRequest>,
error_slot: ErrorSlot,
peer_tx: Tx,
connection_tracker: ConnectionTracker,
connection_info: Arc<ConnectionInfo>,
initial_cached_addrs: Vec<MetaAddr>,
) -> Self {
let metrics_label = connection_info.connected_addr.get_transient_addr_label();
Connection {
connection_info,
state: State::AwaitingRequest,
request_timer: None,
cached_addrs: initial_cached_addrs,
svc: inbound_service,
client_rx: client_rx.into(),
error_slot,
peer_tx: peer_tx.into(),
connection_tracker,
metrics_label,
last_metrics_state: None,
last_overload_time: None,
}
}
}
impl<S, Tx> Connection<S, Tx>
where
S: Service<Request, Response = Response, Error = BoxError>,
S::Error: Into<BoxError>,
Tx: Sink<Message, Error = SerializationError> + Unpin,
{
/// Consume this `Connection` to form a spawnable future containing its event loop.
///
/// `peer_rx` is a channel for receiving Zcash [`Message`]s from the connected peer.
/// The corresponding peer message receiver is [`Connection.peer_tx`].
pub async fn run<Rx>(mut self, mut peer_rx: Rx)
where
Rx: Stream<Item = Result<Message, SerializationError>> + Unpin,
{
// At a high level, the event loop we want is as follows: we check for any
// incoming messages from the remote peer, check if they should be interpreted
// as a response to a pending client request, and if not, interpret them as a
// request from the remote peer to our node.
//
// We also need to handle those client requests in the first place. The client
// requests are received from the corresponding `peer::Client` over a bounded
// channel (with bound 1, to minimize buffering), but there is no relationship
// between the stream of client requests and the stream of peer messages, so we
// cannot ignore one kind while waiting on the other. Moreover, we cannot accept
// a second client request while the first one is still pending.
//
// To do this, we inspect the current request state.
//
// If there is no pending request, we wait on either an incoming peer message or
// an incoming request, whichever comes first.
//
// If there is a pending request, we wait only on an incoming peer message, and
// check whether it can be interpreted as a response to the pending request.
//
// TODO: turn this comment into a module-level comment, after splitting the module.
loop {
self.update_state_metrics(None);
match self.state {
State::AwaitingRequest => {
trace!("awaiting client request or peer message");
// # Correctness
//
// Currently, select prefers the first future if multiple futures are ready.
// We use this behaviour to prioritise messages on each individual peer
// connection in this order:
// - incoming messages from the remote peer, then
// - outgoing messages to the remote peer.
//
// This improves the performance of peer responses to Zebra requests, and new
// peer requests to Zebra's inbound service.
//
// `futures::StreamExt::next()` is cancel-safe:
// <https://docs.rs/tokio/latest/tokio/macro.select.html#cancellation-safety>
// This means that messages from the future that isn't selected stay in the stream,
// and they will be returned next time the future is checked.
//
// If an inbound peer message arrives at a ready peer that also has a pending
// request from Zebra, we want to process the peer's message first.
// If we process the Zebra request first:
// - we could misinterpret the inbound peer message as a response to the Zebra
// request, or
// - if the peer message is a request to Zebra, and we put the peer in the
// AwaitingResponse state, then we'll correctly ignore the simultaneous Zebra
// request. (Zebra services make multiple requests or retry, so this is ok.)
//
// # Security
//
// If a peer sends an uninterrupted series of messages, it will delay any new
// requests from Zebra to that individual peer. This is behaviour we want,
// because:
// - any responses to Zebra's requests to that peer would be slow or timeout,
// - the peer will eventually fail a Zebra keepalive check and get disconnected,
// - if there are too many inbound messages overall, the inbound service will
// return an overload error and the peer will be disconnected.
//
// Messages to other peers will continue to be processed concurrently. Some
// Zebra services might be temporarily delayed until the peer times out, if a
// request to that peer is sent by the service, and the service blocks until
// the request completes (or times out).
match future::select(peer_rx.next(), self.client_rx.next()).await {
Either::Left((None, _)) => {
self.fail_with(PeerError::ConnectionClosed).await;
}
Either::Left((Some(Err(e)), _)) => self.fail_with(e).await,
Either::Left((Some(Ok(msg)), _)) => {
let unhandled_msg = self.handle_message_as_request(msg).await;
if let Some(unhandled_msg) = unhandled_msg {
debug!(
%unhandled_msg,
"ignoring unhandled request while awaiting a request"
);
}
}
Either::Right((None, _)) => {
trace!("client_rx closed, ending connection");
// There are no requests to be flushed,
// but we need to set an error and update metrics.
// (We don't want to log this error, because it's normal behaviour.)
self.shutdown_async(PeerError::ClientDropped).await;
break;
}
Either::Right((Some(req), _)) => {
let span = req.span.clone();
self.handle_client_request(req).instrument(span).await
}
}
}
// Check whether the handler is finished before waiting for a response message,
// because the response might be `Nil` or synthetic.
State::AwaitingResponse {
handler: Handler::Finished(_),
ref span,
..
} => {
// We have to get rid of the span reference so we can tamper with the state.
let span = span.clone();
trace!(
parent: &span,
"returning completed response to client request"
);
// Replace the state with a temporary value,
// so we can take ownership of the response sender.
let tmp_state = std::mem::replace(&mut self.state, State::Failed);
if let State::AwaitingResponse {
handler: Handler::Finished(response),
tx,
..
} = tmp_state
{
if let Ok(response) = response.as_ref() {
debug!(%response, "finished receiving peer response to Zebra request");
// Add a metric for inbound responses to outbound requests.
metrics::counter!(
"zebra.net.in.responses",
"command" => response.command(),
"addr" => self.metrics_label.clone(),
)
.increment(1);
} else {
debug!(error = ?response, "error in peer response to Zebra request");
}
let _ = tx.send(response.map_err(Into::into));
} else {
unreachable!("already checked for AwaitingResponse");
}
self.state = State::AwaitingRequest;
}
// We're awaiting a response to a client request,
// so wait on either a peer message, or on a request cancellation.
State::AwaitingResponse {
ref span,
ref mut tx,
..
} => {
// we have to get rid of the span reference so we can tamper with the state
let span = span.clone();
trace!(parent: &span, "awaiting response to client request");
let timer_ref = self
.request_timer
.as_mut()
.expect("timeout must be set while awaiting response");
// # Security
//
// select() prefers the first future if multiple futures are ready.
//
// If multiple futures are ready, we want the priority for each individual
// connection to be:
// - cancellation, then
// - timeout, then
// - peer responses.
//
// (Messages to other peers are processed concurrently.)
//
// This makes sure a peer can't block disconnection or timeouts by sending too
// many messages. It also avoids doing work to process messages after a
// connection has failed.
let cancel = future::select(tx.cancellation(), timer_ref);
match future::select(cancel, peer_rx.next())
.instrument(span.clone())
.await
{
Either::Right((None, _)) => {
self.fail_with(PeerError::ConnectionClosed).await
}
Either::Right((Some(Err(e)), _)) => self.fail_with(e).await,
Either::Right((Some(Ok(peer_msg)), _cancel)) => {
self.update_state_metrics(format!("Out::Rsp::{}", peer_msg.command()));
// Try to process the message using the handler.
// This extremely awkward construction avoids
// keeping a live reference to handler across the
// call to handle_message_as_request, which takes
// &mut self. This is a sign that we don't properly
// factor the state required for inbound and
// outbound requests.
let request_msg = match self.state {
State::AwaitingResponse {
ref mut handler, ..
} => span.in_scope(|| handler.process_message(peer_msg, &mut self.cached_addrs)),
_ => unreachable!("unexpected state after AwaitingResponse: {:?}, peer_msg: {:?}, client_receiver: {:?}",
self.state,
peer_msg,
self.client_rx,
),
};
self.update_state_metrics(None);
// If the message was not consumed as a response,
// check whether it can be handled as a request.
let unused_msg = if let Some(request_msg) = request_msg {
// do NOT instrument with the request span, this is
// independent work
self.handle_message_as_request(request_msg).await
} else {
None
};
if let Some(unused_msg) = unused_msg {
debug!(
%unused_msg,
%self.state,
"ignoring peer message: not a response or a request",
);
}
}
Either::Left((Either::Right(_), _peer_fut)) => {
trace!(parent: &span, "client request timed out");
let e = PeerError::ConnectionReceiveTimeout;
// Replace the state with a temporary value,
// so we can take ownership of the response sender.
self.state = match std::mem::replace(&mut self.state, State::Failed) {
// Special case: ping timeouts fail the connection.
State::AwaitingResponse {
handler: Handler::Ping(_),
tx,
..
} => {
// We replaced the original state, which means `fail_with` won't see it.
// So we do the state request cleanup manually.
let e = SharedPeerError::from(e);
let _ = tx.send(Err(e.clone()));
self.fail_with(e).await;
State::Failed
}
// Other request timeouts fail the request.
State::AwaitingResponse { tx, .. } => {
let _ = tx.send(Err(e.into()));
State::AwaitingRequest
}
_ => unreachable!(
"unexpected failed connection state while AwaitingResponse: client_receiver: {:?}",
self.client_rx
),
};
}
Either::Left((Either::Left(_), _peer_fut)) => {
// The client receiver was dropped, so we don't need to send on `tx` here.
trace!(parent: &span, "client request was cancelled");
self.state = State::AwaitingRequest;
}
}
}
// This connection has failed: stop the event loop, and complete the future.
State::Failed => break,
}
}
// TODO: close peer_rx here, after changing it from a stream to a channel
let error = self.error_slot.try_get_error();
assert!(
error.is_some(),
"closing connections must call fail_with() or shutdown() to set the error slot"
);
self.update_state_metrics(error.expect("checked is_some").to_string());
}
/// Fail this connection, log the failure, and shut it down.
/// See [`Self::shutdown_async()`] for details.
///
/// Use [`Self::shutdown_async()`] to avoid logging the failure,
/// and [`Self::shutdown()`] from non-async code.
async fn fail_with(&mut self, error: impl Into<SharedPeerError>) {
let error = error.into();
debug!(
%error,
client_receiver = ?self.client_rx,
"failing peer service with error"
);
self.shutdown_async(error).await;
}
/// Handle an internal client request, possibly generating outgoing messages to the
/// remote peer.
///
/// NOTE: the caller should use .instrument(msg.span) to instrument the function.
async fn handle_client_request(&mut self, req: InProgressClientRequest) {
trace!(?req.request);
use Request::*;
use State::*;
let InProgressClientRequest { request, tx, span } = req;
if tx.is_canceled() {
metrics::counter!("peer.canceled").increment(1);
debug!(state = %self.state, %request, "ignoring canceled request");
metrics::counter!(
"zebra.net.out.requests.canceled",
"command" => request.command(),
"addr" => self.metrics_label.clone(),
)
.increment(1);
self.update_state_metrics(format!("Out::Req::Canceled::{}", request.command()));
return;
}
debug!(state = %self.state, %request, "sending request from Zebra to peer");
// Add a metric for outbound requests.
metrics::counter!(
"zebra.net.out.requests",
"command" => request.command(),
"addr" => self.metrics_label.clone(),
)
.increment(1);
self.update_state_metrics(format!("Out::Req::{}", request.command()));
let new_handler = match (&self.state, request) {
(Failed, request) => panic!(
"failed connection cannot handle new request: {:?}, client_receiver: {:?}",
request,
self.client_rx
),
(pending @ AwaitingResponse { .. }, request) => panic!(
"tried to process new request: {:?} while awaiting a response: {:?}, client_receiver: {:?}",
request,
pending,
self.client_rx
),
// Take some cached addresses from the peer connection. This address cache helps
// work-around a `zcashd` addr response rate-limit.
(AwaitingRequest, Peers) if !self.cached_addrs.is_empty() => {
// Security: This method performs security-sensitive operations, see its comments
// for details.
let response_addrs = Handler::update_addr_cache(&mut self.cached_addrs, None, PEER_ADDR_RESPONSE_LIMIT);
debug!(
response_addrs = response_addrs.len(),
remaining_addrs = self.cached_addrs.len(),
PEER_ADDR_RESPONSE_LIMIT,
"responding to Peers request using some cached addresses",
);
Ok(Handler::Finished(Ok(Response::Peers(response_addrs))))
}
(AwaitingRequest, Peers) => self
.peer_tx
.send(Message::GetAddr)
.await
.map(|()| Handler::Peers),
(AwaitingRequest, Ping(nonce)) => self
.peer_tx
.send(Message::Ping(nonce))
.await
.map(|()| Handler::Ping(nonce)),
(AwaitingRequest, BlocksByHash(hashes)) => {
self
.peer_tx
.send(Message::GetData(
hashes.iter().map(|h| (*h).into()).collect(),
))
.await
.map(|()|
Handler::BlocksByHash {
blocks: Vec::with_capacity(hashes.len()),
pending_hashes: hashes,
}
)
}
(AwaitingRequest, TransactionsById(ids)) => {
self
.peer_tx
.send(Message::GetData(
ids.iter().map(Into::into).collect(),
))
.await
.map(|()|
Handler::TransactionsById {
transactions: Vec::with_capacity(ids.len()),
pending_ids: ids,
})
}
(AwaitingRequest, FindBlocks { known_blocks, stop }) => {
self
.peer_tx
.send(Message::GetBlocks { known_blocks, stop })
.await
.map(|()|
Handler::FindBlocks
)
}
(AwaitingRequest, FindHeaders { known_blocks, stop }) => {
self
.peer_tx
.send(Message::GetHeaders { known_blocks, stop })
.await
.map(|()|
Handler::FindHeaders
)
}
(AwaitingRequest, MempoolTransactionIds) => {
self
.peer_tx
.send(Message::Mempool)
.await
.map(|()|
Handler::MempoolTransactionIds
)
}
(AwaitingRequest, PushTransaction(transaction)) => {
self
.peer_tx
.send(Message::Tx(transaction))
.await
.map(|()|
Handler::Finished(Ok(Response::Nil))
)
}
(AwaitingRequest, AdvertiseTransactionIds(hashes)) => {
let max_tx_inv_in_message: usize = MAX_TX_INV_IN_SENT_MESSAGE
.try_into()
.expect("constant fits in usize");
// # Security
//
// In most cases, we try to split over-sized requests into multiple network-layer
// messages. But we are unlikely to reach this limit with the default mempool
// config, so a gossip like this could indicate a network amplification attack.
//
// This limit is particularly important here, because advertisements send the same
// message to half our available peers.
//
// If there are thousands of transactions in the mempool, letting peers know the
// exact transactions we have isn't that important, so it's ok to drop arbitrary
// transaction hashes from our response.
if hashes.len() > max_tx_inv_in_message {
debug!(inv_count = ?hashes.len(), ?MAX_TX_INV_IN_SENT_MESSAGE, "unusually large transaction ID gossip");
}
let hashes = hashes.into_iter().take(max_tx_inv_in_message).map(Into::into).collect();
self
.peer_tx
.send(Message::Inv(hashes))
.await
.map(|()|
Handler::Finished(Ok(Response::Nil))
)
}
(AwaitingRequest, AdvertiseBlock(hash)) => {
self
.peer_tx
.send(Message::Inv(vec![hash.into()]))
.await
.map(|()|
Handler::Finished(Ok(Response::Nil))
)
}
};
// Update the connection state with a new handler, or fail with an error.
match new_handler {
Ok(handler) => {
self.state = AwaitingResponse { handler, span, tx };
self.request_timer = Some(Box::pin(sleep(constants::REQUEST_TIMEOUT)));
}
Err(error) => {
let error = SharedPeerError::from(error);
let _ = tx.send(Err(error.clone()));
self.fail_with(error).await;
}
};
}
/// Handle `msg` as a request from a peer to this Zebra instance.
///
/// If the message is not handled, it is returned.
// This function has its own span, because we're creating a new work
// context (namely, the work of processing the inbound msg as a request)
#[instrument(name = "msg_as_req", skip(self, msg), fields(msg = msg.command()))]
async fn handle_message_as_request(&mut self, msg: Message) -> Option<Message> {
trace!(?msg);
debug!(state = %self.state, %msg, "received inbound peer message");
self.update_state_metrics(format!("In::Msg::{}", msg.command()));
use InboundMessage::*;
let req = match msg {
Message::Ping(nonce) => {
trace!(?nonce, "responding to heartbeat");
if let Err(e) = self.peer_tx.send(Message::Pong(nonce)).await {
self.fail_with(e).await;
}
Consumed
}
// These messages shouldn't be sent outside of a handshake.
Message::Version { .. } => {
self.fail_with(PeerError::DuplicateHandshake).await;
Consumed
}
Message::Verack { .. } => {
self.fail_with(PeerError::DuplicateHandshake).await;
Consumed
}
// These messages should already be handled as a response if they
// could be a response, so if we see them here, they were either
// sent unsolicited, or they were sent in response to a canceled request
// that we've already forgotten about.
Message::Reject { .. } => {
debug!(%msg, "got reject message unsolicited or from canceled request");
Unused
}
Message::NotFound { .. } => {
debug!(%msg, "got notfound message unsolicited or from canceled request");
Unused
}
Message::Pong(_) => {
debug!(%msg, "got pong message unsolicited or from canceled request");
Unused
}
Message::Block(_) => {
debug!(%msg, "got block message unsolicited or from canceled request");
Unused
}
Message::Headers(_) => {
debug!(%msg, "got headers message unsolicited or from canceled request");
Unused
}
// These messages should never be sent by peers.
Message::FilterLoad { .. }
| Message::FilterAdd { .. }
| Message::FilterClear { .. } => {
// # Security
//
// Zcash connections are not authenticated, so malicious nodes can send fake messages,
// with connected peers' IP addresses in the IP header.
//
// Since we can't verify their source, Zebra needs to ignore unexpected messages,
// because closing the connection could cause a denial of service or eclipse attack.
debug!(%msg, "got BIP111 message without advertising NODE_BLOOM");
// Ignored, but consumed because it is technically a protocol error.
Consumed
}
// # Security
//
// Zebra crawls the network proactively, and that's the only way peers get into our
// address book. This prevents peers from filling our address book with malicious peer
// addresses.
Message::Addr(ref new_addrs) => {
// # Peer Set Reliability
//
// We keep a list of the unused peer addresses sent by each connection, to work
// around `zcashd`'s `getaddr` response rate-limit.
let no_response =
Handler::update_addr_cache(&mut self.cached_addrs, new_addrs, None);
assert_eq!(
no_response,
Vec::new(),
"peers unexpectedly taken from cache"
);
debug!(
new_addrs = new_addrs.len(),
cached_addrs = self.cached_addrs.len(),
"adding unsolicited addresses to cached addresses",
);
Consumed
}
Message::Tx(ref transaction) => Request::PushTransaction(transaction.clone()).into(),
Message::Inv(ref items) => match &items[..] {
// We don't expect to be advertised multiple blocks at a time,
// so we ignore any advertisements of multiple blocks.
[InventoryHash::Block(hash)] => Request::AdvertiseBlock(*hash).into(),
// Some peers advertise invs with mixed item types.
// But we're just interested in the transaction invs.
//
// TODO: split mixed invs into multiple requests,
// but skip runs of multiple blocks.
tx_ids if tx_ids.iter().any(|item| item.unmined_tx_id().is_some()) => {
Request::AdvertiseTransactionIds(transaction_ids(items).collect()).into()
}
// Log detailed messages for ignored inv advertisement messages.
[] => {
debug!(%msg, "ignoring empty inv");
// This might be a minor protocol error, or it might mean "not found".
Unused
}
[InventoryHash::Block(_), InventoryHash::Block(_), ..] => {
debug!(%msg, "ignoring inv with multiple blocks");
Unused
}
_ => {
debug!(%msg, "ignoring inv with no transactions");
Unused
}
},
Message::GetData(ref items) => match &items[..] {
// Some peers advertise invs with mixed item types.
// So we suspect they might do the same with getdata.
//
// Since we can only handle one message at a time,
// we treat it as a block request if there are any blocks,
// or a transaction request if there are any transactions.
//
// TODO: split mixed getdata into multiple requests.
b_hashes
if b_hashes
.iter()
.any(|item| matches!(item, InventoryHash::Block(_))) =>
{
Request::BlocksByHash(block_hashes(items).collect()).into()
}
tx_ids if tx_ids.iter().any(|item| item.unmined_tx_id().is_some()) => {
Request::TransactionsById(transaction_ids(items).collect()).into()
}
// Log detailed messages for ignored getdata request messages.
[] => {
debug!(%msg, "ignoring empty getdata");
// This might be a minor protocol error, or it might mean "not found".
Unused
}
_ => {
debug!(%msg, "ignoring getdata with no blocks or transactions");
Unused
}
},
Message::GetAddr => Request::Peers.into(),
Message::GetBlocks {
ref known_blocks,
stop,
} => Request::FindBlocks {
known_blocks: known_blocks.clone(),
stop,
}
.into(),
Message::GetHeaders {
ref known_blocks,
stop,
} => Request::FindHeaders {
known_blocks: known_blocks.clone(),
stop,
}
.into(),
Message::Mempool => Request::MempoolTransactionIds.into(),
};
// Handle the request, and return unused messages.
match req {
AsRequest(req) => {
self.drive_peer_request(req).await;
None
}
Consumed => None,
Unused => Some(msg),
}
}
/// Given a `req` originating from the peer, drive it to completion and send
/// any appropriate messages to the remote peer. If an error occurs while
/// processing the request (e.g., the service is shedding load), then we call
/// fail_with to terminate the entire peer connection, shrinking the number
/// of connected peers.
async fn drive_peer_request(&mut self, req: Request) {
trace!(?req);
// Add a metric for inbound requests
metrics::counter!(
"zebra.net.in.requests",
"command" => req.command(),
"addr" => self.metrics_label.clone(),
)
.increment(1);
self.update_state_metrics(format!("In::Req::{}", req.command()));
// Give the inbound service time to clear its queue,
// before sending the next inbound request.
tokio::task::yield_now().await;
// # Security
//
// Holding buffer slots for a long time can cause hangs:
// <https://docs.rs/tower/latest/tower/buffer/struct.Buffer.html#a-note-on-choosing-a-bound>
//
// The inbound service must be called immediately after a buffer slot is reserved.
//
// The inbound service never times out in readiness, because the load shed layer is always
// ready, and returns an error in response to the request instead.
if self.svc.ready().await.is_err() {
self.fail_with(PeerError::ServiceShutdown).await;
return;
}
// Inbound service request timeouts are handled by the timeout layer in `start::start()`.
let rsp = match self.svc.call(req.clone()).await {
Err(e) => {
if e.is::<tower::load_shed::error::Overloaded>() {
// # Security
//
// The peer request queue must have a limited length.
// The buffer and load shed layers are added in `start::start()`.
tracing::debug!("inbound service is overloaded, may close connection");
let now = Instant::now();
self.handle_inbound_overload(req, now, PeerError::Overloaded)
.await;
} else if e.is::<tower::timeout::error::Elapsed>() {
// # Security
//
// Peer requests must have a timeout.
// The timeout layer is added in `start::start()`.
tracing::info!(%req, "inbound service request timed out, may close connection");
let now = Instant::now();
self.handle_inbound_overload(req, now, PeerError::InboundTimeout)
.await;
} else {
// We could send a reject to the remote peer, but that might cause
// them to disconnect, and we might be using them to sync blocks.
// For similar reasons, we don't want to fail_with() here - we
// only close the connection if the peer is doing something wrong.
info!(
%e,
connection_state = ?self.state,
client_receiver = ?self.client_rx,
"error processing peer request",
);
self.update_state_metrics(format!("In::Req::{}/Rsp::Error", req.command()));
}
return;
}
Ok(rsp) => rsp,
};
// Add a metric for outbound responses to inbound requests
metrics::counter!(
"zebra.net.out.responses",
"command" => rsp.command(),
"addr" => self.metrics_label.clone(),
)
.increment(1);
self.update_state_metrics(format!("In::Rsp::{}", rsp.command()));
// TODO: split response handler into its own method
match rsp.clone() {
Response::Nil => { /* generic success, do nothing */ }
Response::Peers(addrs) => {
if let Err(e) = self.peer_tx.send(Message::Addr(addrs)).await {
self.fail_with(e).await;
}
}
Response::Transactions(transactions) => {
// Generate one tx message per transaction,
// then a notfound message with all the missing transaction ids.
let mut missing_ids = Vec::new();
for transaction in transactions.into_iter() {
match transaction {
Available(transaction) => {
if let Err(e) = self.peer_tx.send(Message::Tx(transaction)).await {
self.fail_with(e).await;
return;
}
}
Missing(id) => missing_ids.push(id.into()),
}
}
if !missing_ids.is_empty() {
if let Err(e) = self.peer_tx.send(Message::NotFound(missing_ids)).await {
self.fail_with(e).await;
return;
}
}
}
Response::Blocks(blocks) => {
// Generate one tx message per block,
// then a notfound message with all the missing block hashes.
let mut missing_hashes = Vec::new();
for block in blocks.into_iter() {
match block {
Available(block) => {
if let Err(e) = self.peer_tx.send(Message::Block(block)).await {
self.fail_with(e).await;
return;
}
}
Missing(hash) => missing_hashes.push(hash.into()),
}
}
if !missing_hashes.is_empty() {
if let Err(e) = self.peer_tx.send(Message::NotFound(missing_hashes)).await {
self.fail_with(e).await;
return;
}
}
}
Response::BlockHashes(hashes) => {
if let Err(e) = self
.peer_tx
.send(Message::Inv(hashes.into_iter().map(Into::into).collect()))
.await
{
self.fail_with(e).await
}
}
Response::BlockHeaders(headers) => {
if let Err(e) = self.peer_tx.send(Message::Headers(headers)).await {
self.fail_with(e).await
}
}
Response::TransactionIds(hashes) => {
let max_tx_inv_in_message: usize = MAX_TX_INV_IN_SENT_MESSAGE
.try_into()
.expect("constant fits in usize");
// # Security
//
// In most cases, we try to split over-sized responses into multiple network-layer
// messages. But we are unlikely to reach this limit with the default mempool
// config, so a response like this could indicate a network amplification attack.
//
// If there are thousands of transactions in the mempool, letting peers know the
// exact transactions we have isn't that important, so it's ok to drop arbitrary
// transaction hashes from our response.
if hashes.len() > max_tx_inv_in_message {
debug!(inv_count = ?hashes.len(), ?MAX_TX_INV_IN_SENT_MESSAGE, "unusually large transaction ID response");
}
let hashes = hashes
.into_iter()
.take(max_tx_inv_in_message)
.map(Into::into)
.collect();
if let Err(e) = self.peer_tx.send(Message::Inv(hashes)).await {
self.fail_with(e).await
}
}
}
debug!(state = %self.state, %req, %rsp, "sent Zebra response to peer");
// Give the inbound service time to clear its queue,
// before checking the connection for the next inbound or outbound request.
tokio::task::yield_now().await;
}
/// Handle inbound service overload and timeout error responses by randomly terminating some
/// connections.
///
/// # Security
///
/// When the inbound service is overloaded with requests, Zebra needs to drop some connections,
/// to reduce the load on the application. But dropping every connection that receives an
/// `Overloaded` error from the inbound service could cause Zebra to drop too many peer
/// connections, and stop itself downloading blocks or transactions.
///
/// Malicious or misbehaving peers can also overload the inbound service, and make Zebra drop
/// its connections to other peers.
///
/// So instead, Zebra drops some overloaded connections at random. If a connection has recently
/// overloaded the inbound service, it is more likely to be dropped. This makes it harder for a
/// single peer (or multiple peers) to perform a denial of service attack.
///
/// The inbound connection rate-limit also makes it hard for multiple peers to perform this
/// attack, because each inbound connection can only send one inbound request before its
/// probability of being disconnected increases.
async fn handle_inbound_overload(&mut self, req: Request, now: Instant, error: PeerError) {
let prev = self.last_overload_time.replace(now);
let drop_connection_probability = overload_drop_connection_probability(now, prev);
if thread_rng().gen::<f32>() < drop_connection_probability {
if matches!(error, PeerError::Overloaded) {
metrics::counter!("pool.closed.loadshed").increment(1);
} else {
metrics::counter!("pool.closed.inbound.timeout").increment(1);
}
tracing::info!(
drop_connection_probability = format!("{drop_connection_probability:.3}"),
remote_user_agent = ?self.connection_info.remote.user_agent,
negotiated_version = ?self.connection_info.negotiated_version,
peer = ?self.metrics_label,
last_peer_state = ?self.last_metrics_state,
// TODO: remove this detailed debug info once #6506 is fixed
remote_height = ?self.connection_info.remote.start_height,
cached_addrs = ?self.cached_addrs.len(),
connection_state = ?self.state,
"inbound service {error} error, closing connection",
);
self.update_state_metrics(format!("In::Req::{}/Rsp::{error}::Error", req.command()));
self.fail_with(error).await;
} else {
self.update_state_metrics(format!("In::Req::{}/Rsp::{error}::Ignored", req.command()));
if matches!(error, PeerError::Overloaded) {
metrics::counter!("pool.ignored.loadshed").increment(1);
} else {
metrics::counter!("pool.ignored.inbound.timeout").increment(1);
}
}
}
}
/// Returns the probability of dropping a connection where the last overload was at `prev`,
/// and the current overload is `now`.
///
/// # Security
///
/// Connections that haven't seen an overload error in the past OVERLOAD_PROTECTION_INTERVAL
/// have a small chance of being closed (MIN_OVERLOAD_DROP_PROBABILITY).
///
/// Connections that have seen a previous overload error in that time
/// have a higher chance of being dropped up to MAX_OVERLOAD_DROP_PROBABILITY.
/// This probability increases quadratically, so peers that send lots of inbound
/// requests are more likely to be dropped.
///
/// ## Examples
///
/// If a connection sends multiple overloads close together, it is very likely to be
/// disconnected. If a connection has two overloads multiple seconds apart, it is unlikely
/// to be disconnected.
fn overload_drop_connection_probability(now: Instant, prev: Option<Instant>) -> f32 {
let Some(prev) = prev else {
return MIN_OVERLOAD_DROP_PROBABILITY;
};
let protection_fraction_since_last_overload =
(now - prev).as_secs_f32() / OVERLOAD_PROTECTION_INTERVAL.as_secs_f32();
// Quadratically increase the disconnection probability for very recent overloads.
// Negative values are ignored by clamping to MIN_OVERLOAD_DROP_PROBABILITY.
let overload_fraction = protection_fraction_since_last_overload.powi(2);
let probability_range = MAX_OVERLOAD_DROP_PROBABILITY - MIN_OVERLOAD_DROP_PROBABILITY;
let raw_drop_probability =
MAX_OVERLOAD_DROP_PROBABILITY - (overload_fraction * probability_range);
raw_drop_probability.clamp(MIN_OVERLOAD_DROP_PROBABILITY, MAX_OVERLOAD_DROP_PROBABILITY)
}
impl<S, Tx> Connection<S, Tx>
where
Tx: Sink<Message, Error = SerializationError> + Unpin,
{
/// Update the connection state metrics for this connection,
/// using `extra_state_info` as additional state information.
fn update_state_metrics(&mut self, extra_state_info: impl Into<Option<String>>) {
let current_metrics_state = if let Some(extra_state_info) = extra_state_info.into() {
format!("{}::{extra_state_info}", self.state.command()).into()
} else {
self.state.command()
};
if self.last_metrics_state.as_ref() == Some(¤t_metrics_state) {
return;
}
self.erase_state_metrics();
// Set the new state
metrics::gauge!(
"zebra.net.connection.state",
"command" => current_metrics_state.clone(),
"addr" => self.metrics_label.clone(),
)
.increment(1.0);
self.last_metrics_state = Some(current_metrics_state);
}
/// Erase the connection state metrics for this connection.
fn erase_state_metrics(&mut self) {
if let Some(last_metrics_state) = self.last_metrics_state.take() {
metrics::gauge!(
"zebra.net.connection.state",
"command" => last_metrics_state,
"addr" => self.metrics_label.clone(),
)
.set(0.0);
}
}
/// Marks the peer as having failed with `error`, and performs connection cleanup,
/// including async channel closes.
///
/// If the connection has errored already, re-use the original error.
/// Otherwise, fail the connection with `error`.
async fn shutdown_async(&mut self, error: impl Into<SharedPeerError>) {
// Close async channels first, so other tasks can start shutting down.
// There's nothing we can do about errors while shutting down, and some errors are expected.
//
// TODO: close peer_tx and peer_rx in shutdown() and Drop, after:
// - using channels instead of streams/sinks?
// - exposing the underlying implementation rather than using generics and closures?
// - adding peer_rx to the connection struct (optional)
let _ = self.peer_tx.close().await;
self.shutdown(error);
}
/// Marks the peer as having failed with `error`, and performs connection cleanup.
/// See [`Self::shutdown_async()`] for details.
///
/// Call [`Self::shutdown_async()`] in async code, because it can shut down more channels.
fn shutdown(&mut self, error: impl Into<SharedPeerError>) {
let mut error = error.into();
// Close channels first, so other tasks can start shutting down.
self.client_rx.close();
// Update the shared error slot
//
// # Correctness
//
// Error slots use a threaded `std::sync::Mutex`, so accessing the slot
// can block the async task's current thread. We only perform a single
// slot update per `Client`. We ignore subsequent error slot updates.
let slot_result = self.error_slot.try_update_error(error.clone());
if let Err(AlreadyErrored { original_error }) = slot_result {
debug!(
new_error = %error,
%original_error,
connection_state = ?self.state,
"multiple errors on connection: \
failed connections should stop processing pending requests and responses, \
then close the connection"
);
error = original_error;
} else {
debug!(%error,
connection_state = ?self.state,
"shutting down peer service with error");
}
// Prepare to flush any pending client requests.
//
// We've already closed the client channel, so setting State::Failed
// will make the main loop flush any pending requests.
//
// However, we may have an outstanding client request in State::AwaitingResponse,
// so we need to deal with it first.
if let State::AwaitingResponse { tx, .. } =
std::mem::replace(&mut self.state, State::Failed)
{
// # Correctness
//
// We know the slot has Some(error), because we just set it above,
// and the error slot is never unset.
//
// Accessing the error slot locks a threaded std::sync::Mutex, which
// can block the current async task thread. We briefly lock the mutex
// to clone the error.
let _ = tx.send(Err(error.clone()));
}
// Make the timer and metrics consistent with the Failed state.
self.request_timer = None;
self.update_state_metrics(None);
// Finally, flush pending client requests.
while let Some(InProgressClientRequest { tx, span, .. }) =
self.client_rx.close_and_flush_next()
{
trace!(
parent: &span,
%error,
"sending an error response to a pending request on a failed connection"
);
let _ = tx.send(Err(error.clone()));
}
}
}
impl<S, Tx> Drop for Connection<S, Tx>
where
Tx: Sink<Message, Error = SerializationError> + Unpin,
{
fn drop(&mut self) {
self.shutdown(PeerError::ConnectionDropped);
self.erase_state_metrics();
}
}
/// Map a list of inventory hashes to the corresponding unmined transaction IDs.
/// Non-transaction inventory hashes are skipped.
///
/// v4 transactions use a legacy transaction ID, and
/// v5 transactions use a witnessed transaction ID.
fn transaction_ids(items: &'_ [InventoryHash]) -> impl Iterator<Item = UnminedTxId> + '_ {
items.iter().filter_map(InventoryHash::unmined_tx_id)
}
/// Map a list of inventory hashes to the corresponding block hashes.
/// Non-block inventory hashes are skipped.
fn block_hashes(items: &'_ [InventoryHash]) -> impl Iterator<Item = block::Hash> + '_ {
items.iter().filter_map(InventoryHash::block_hash)
}