zebra_chain/orchard/
tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//! Note Commitment Trees.
//!
//! A note commitment tree is an incremental Merkle tree of fixed depth
//! used to store note commitments that Action
//! transfers produce. Just as the unspent transaction output set (UTXO
//! set) used in Bitcoin, it is used to express the existence of value and
//! the capability to spend it. However, unlike the UTXO set, it is not
//! the job of this tree to protect against double-spending, as it is
//! append-only.
//!
//! A root of a note commitment tree is associated with each treestate.

use std::{
    default::Default,
    fmt,
    hash::{Hash, Hasher},
    io,
};

use bitvec::prelude::*;
use bridgetree::NonEmptyFrontier;
use halo2::pasta::{group::ff::PrimeField, pallas};
use hex::ToHex;
use incrementalmerkletree::Hashable;
use lazy_static::lazy_static;
use thiserror::Error;
use zcash_primitives::merkle_tree::HashSer;

use super::sinsemilla::*;

use crate::{
    serialization::{
        serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
    },
    subtree::{NoteCommitmentSubtreeIndex, TRACKED_SUBTREE_HEIGHT},
};

pub mod legacy;
use legacy::LegacyNoteCommitmentTree;

/// The type that is used to update the note commitment tree.
///
/// Unfortunately, this is not the same as `orchard::NoteCommitment`.
pub type NoteCommitmentUpdate = pallas::Base;

pub(super) const MERKLE_DEPTH: u8 = 32;

/// MerkleCRH^Orchard Hash Function
///
/// Used to hash incremental Merkle tree hash values for Orchard.
///
/// MerkleCRH^Orchard: {0..MerkleDepth^Orchard āˆ’ 1} Ɨ Pš‘„ Ɨ Pš‘„ ā†’ Pš‘„
///
/// MerkleCRH^Orchard(layer, left, right) := 0 if hash == āŠ„; hash otherwise
///
/// where hash = SinsemillaHash("z.cash:Orchard-MerkleCRH", l || left || right),
/// l = I2LEBSP_10(MerkleDepth^Orchard āˆ’ 1 āˆ’ layer),  and left, right, and
/// the output are the x-coordinates of Pallas affine points.
///
/// <https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh>
/// <https://zips.z.cash/protocol/protocol.pdf#constants>
fn merkle_crh_orchard(layer: u8, left: pallas::Base, right: pallas::Base) -> pallas::Base {
    let mut s = bitvec![u8, Lsb0;];

    // Prefix: l = I2LEBSP_10(MerkleDepth^Orchard āˆ’ 1 āˆ’ layer)
    let l = MERKLE_DEPTH - 1 - layer;
    s.extend_from_bitslice(&BitArray::<_, Lsb0>::from([l, 0])[0..10]);
    s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(left.to_repr())[0..255]);
    s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(right.to_repr())[0..255]);

    match sinsemilla_hash(b"z.cash:Orchard-MerkleCRH", &s) {
        Some(h) => h,
        None => pallas::Base::zero(),
    }
}

lazy_static! {
    /// List of "empty" Orchard note commitment nodes, one for each layer.
    ///
    /// The list is indexed by the layer number (0: root; MERKLE_DEPTH: leaf).
    ///
    /// <https://zips.z.cash/protocol/protocol.pdf#constants>
    pub(super) static ref EMPTY_ROOTS: Vec<pallas::Base> = {
        // The empty leaf node. This is layer 32.
        let mut v = vec![NoteCommitmentTree::uncommitted()];

        // Starting with layer 31 (the first internal layer, after the leaves),
        // generate the empty roots up to layer 0, the root.
        for layer in (0..MERKLE_DEPTH).rev()
        {
            // The vector is generated from the end, pushing new nodes to its beginning.
            // For this reason, the layer below is v[0].
            let next = merkle_crh_orchard(layer, v[0], v[0]);
            v.insert(0, next);
        }

        v

    };
}

/// Orchard note commitment tree root node hash.
///
/// The root hash in LEBS2OSP256(rt) encoding of the Orchard note commitment
/// tree corresponding to the final Orchard treestate of this block. A root of a
/// note commitment tree is associated with each treestate.
#[derive(Clone, Copy, Default, Eq, Serialize, Deserialize)]
pub struct Root(#[serde(with = "serde_helpers::Base")] pub(crate) pallas::Base);

impl fmt::Debug for Root {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("Root")
            .field(&hex::encode(self.0.to_repr()))
            .finish()
    }
}

impl From<Root> for [u8; 32] {
    fn from(root: Root) -> Self {
        root.0.into()
    }
}

impl From<&Root> for [u8; 32] {
    fn from(root: &Root) -> Self {
        (*root).into()
    }
}

impl Hash for Root {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.to_repr().hash(state)
    }
}

impl PartialEq for Root {
    fn eq(&self, other: &Self) -> bool {
        // TODO: should we compare canonical forms here using `.to_repr()`?
        self.0 == other.0
    }
}

impl TryFrom<[u8; 32]> for Root {
    type Error = SerializationError;

    fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
        let possible_point = pallas::Base::from_repr(bytes);

        if possible_point.is_some().into() {
            Ok(Self(possible_point.unwrap()))
        } else {
            Err(SerializationError::Parse(
                "Invalid pallas::Base value for Orchard note commitment tree root",
            ))
        }
    }
}

impl ZcashSerialize for Root {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_all(&<[u8; 32]>::from(*self)[..])?;

        Ok(())
    }
}

impl ZcashDeserialize for Root {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        Self::try_from(reader.read_32_bytes()?)
    }
}

/// A node of the Orchard Incremental Note Commitment Tree.
#[derive(Copy, Clone, Eq, PartialEq, Default)]
pub struct Node(pallas::Base);

impl Node {
    /// Calls `to_repr()` on inner value.
    pub fn to_repr(&self) -> [u8; 32] {
        self.0.to_repr()
    }

    /// Return the node bytes in big-endian byte-order suitable for printing out byte by byte.
    ///
    /// `zcashd`'s `z_getsubtreesbyindex` does not reverse the byte order of subtree roots.
    pub fn bytes_in_display_order(&self) -> [u8; 32] {
        self.to_repr()
    }
}

impl TryFrom<&[u8]> for Node {
    type Error = &'static str;

    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        <[u8; 32]>::try_from(bytes)
            .map_err(|_| "wrong byte slice len")?
            .try_into()
    }
}

impl TryFrom<[u8; 32]> for Node {
    type Error = &'static str;

    fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
        Option::<pallas::Base>::from(pallas::Base::from_repr(bytes))
            .map(Node)
            .ok_or("invalid Pallas field element")
    }
}

impl fmt::Display for Node {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&self.encode_hex::<String>())
    }
}

impl fmt::Debug for Node {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("orchard::Node")
            .field(&self.encode_hex::<String>())
            .finish()
    }
}

impl ToHex for &Node {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex_upper()
    }
}

impl ToHex for Node {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex_upper()
    }
}

/// Required to serialize [`NoteCommitmentTree`]s in a format compatible with `zcashd`.
///
/// Zebra stores Orchard note commitment trees as [`Frontier`][1]s while the
/// [`z_gettreestate`][2] RPC requires [`CommitmentTree`][3]s. Implementing
/// [`HashSer`] for [`Node`]s allows the conversion.
///
/// [1]: bridgetree::Frontier
/// [2]: https://zcash.github.io/rpc/z_gettreestate.html
/// [3]: incrementalmerkletree::frontier::CommitmentTree
impl HashSer for Node {
    fn read<R: io::Read>(mut reader: R) -> io::Result<Self> {
        let mut repr = [0u8; 32];
        reader.read_exact(&mut repr)?;
        let maybe_node = pallas::Base::from_repr(repr).map(Self);

        <Option<_>>::from(maybe_node).ok_or_else(|| {
            io::Error::new(
                io::ErrorKind::InvalidInput,
                "Non-canonical encoding of Pallas base field value.",
            )
        })
    }

    fn write<W: io::Write>(&self, mut writer: W) -> io::Result<()> {
        writer.write_all(&self.0.to_repr())
    }
}

impl Hashable for Node {
    fn empty_leaf() -> Self {
        Self(NoteCommitmentTree::uncommitted())
    }

    /// Combine two nodes to generate a new node in the given level.
    /// Level 0 is the layer above the leaves (layer 31).
    /// Level 31 is the root (layer 0).
    fn combine(level: incrementalmerkletree::Level, a: &Self, b: &Self) -> Self {
        let layer = MERKLE_DEPTH - 1 - u8::from(level);
        Self(merkle_crh_orchard(layer, a.0, b.0))
    }

    /// Return the node for the level below the given level. (A quirk of the API)
    fn empty_root(level: incrementalmerkletree::Level) -> Self {
        let layer_below = usize::from(MERKLE_DEPTH) - usize::from(level);
        Self(EMPTY_ROOTS[layer_below])
    }
}

impl From<pallas::Base> for Node {
    fn from(x: pallas::Base) -> Self {
        Node(x)
    }
}

impl serde::Serialize for Node {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        self.0.to_repr().serialize(serializer)
    }
}

impl<'de> serde::Deserialize<'de> for Node {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let bytes = <[u8; 32]>::deserialize(deserializer)?;
        Option::<pallas::Base>::from(pallas::Base::from_repr(bytes))
            .map(Node)
            .ok_or_else(|| serde::de::Error::custom("invalid Pallas field element"))
    }
}

#[derive(Error, Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[allow(missing_docs)]
pub enum NoteCommitmentTreeError {
    #[error("The note commitment tree is full")]
    FullTree,
}

/// Orchard Incremental Note Commitment Tree
///
/// Note that the default value of the [`Root`] type is `[0, 0, 0, 0]`. However, this value differs
/// from the default value of the root of the default tree which is the hash of the root's child
/// nodes. The default tree is the empty tree which has all leaves empty.
#[derive(Debug, Serialize, Deserialize)]
#[serde(into = "LegacyNoteCommitmentTree")]
#[serde(from = "LegacyNoteCommitmentTree")]
pub struct NoteCommitmentTree {
    /// The tree represented as a Frontier.
    ///
    /// A Frontier is a subset of the tree that allows to fully specify it.
    /// It consists of nodes along the rightmost (newer) branch of the tree that
    /// has non-empty nodes. Upper (near root) empty nodes of the branch are not
    /// stored.
    ///
    /// # Consensus
    ///
    /// > [NU5 onward] A block MUST NOT add Orchard note commitments that would result in the Orchard note
    /// > commitment tree exceeding its capacity of 2^(MerkleDepth^Orchard) leaf nodes.
    ///
    /// <https://zips.z.cash/protocol/protocol.pdf#merkletree>
    ///
    /// Note: MerkleDepth^Orchard = MERKLE_DEPTH = 32.
    inner: bridgetree::Frontier<Node, MERKLE_DEPTH>,

    /// A cached root of the tree.
    ///
    /// Every time the root is computed by [`Self::root`] it is cached here,
    /// and the cached value will be returned by [`Self::root`] until the tree is
    /// changed by [`Self::append`]. This greatly increases performance
    /// because it avoids recomputing the root when the tree does not change
    /// between blocks. In the finalized state, the tree is read from
    /// disk for every block processed, which would also require recomputing
    /// the root even if it has not changed (note that the cached root is
    /// serialized with the tree). This is particularly important since we decided
    /// to instantiate the trees from the genesis block, for simplicity.
    ///
    /// We use a [`RwLock`](std::sync::RwLock) for this cache, because it is
    /// only written once per tree update. Each tree has its own cached root, a
    /// new lock is created for each clone.
    cached_root: std::sync::RwLock<Option<Root>>,
}

impl NoteCommitmentTree {
    /// Adds a note commitment x-coordinate to the tree.
    ///
    /// The leaves of the tree are actually a base field element, the
    /// x-coordinate of the commitment, the data that is actually stored on the
    /// chain and input into the proof.
    ///
    /// Returns an error if the tree is full.
    #[allow(clippy::unwrap_in_result)]
    pub fn append(&mut self, cm_x: NoteCommitmentUpdate) -> Result<(), NoteCommitmentTreeError> {
        if self.inner.append(cm_x.into()) {
            // Invalidate cached root
            let cached_root = self
                .cached_root
                .get_mut()
                .expect("a thread that previously held exclusive lock access panicked");

            *cached_root = None;

            Ok(())
        } else {
            Err(NoteCommitmentTreeError::FullTree)
        }
    }

    /// Returns frontier of non-empty tree, or `None` if the tree is empty.
    fn frontier(&self) -> Option<&NonEmptyFrontier<Node>> {
        self.inner.value()
    }

    /// Returns the position of the most recently appended leaf in the tree.
    ///
    /// This method is used for debugging, use `incrementalmerkletree::Address` for tree operations.
    pub fn position(&self) -> Option<u64> {
        let Some(tree) = self.frontier() else {
            // An empty tree doesn't have a previous leaf.
            return None;
        };

        Some(tree.position().into())
    }

    /// Returns true if this tree has at least one new subtree, when compared with `prev_tree`.
    pub fn contains_new_subtree(&self, prev_tree: &Self) -> bool {
        // Use -1 for the index of the subtree with no notes, so the comparisons are valid.
        let index = self.subtree_index().map_or(-1, |index| i32::from(index.0));
        let prev_index = prev_tree
            .subtree_index()
            .map_or(-1, |index| i32::from(index.0));

        // This calculation can't overflow, because we're using i32 for u16 values.
        let index_difference = index - prev_index;

        // There are 4 cases we need to handle:
        // - lower index: never a new subtree
        // - equal index: sometimes a new subtree
        // - next index: sometimes a new subtree
        // - greater than the next index: always a new subtree
        //
        // To simplify the function, we deal with the simple cases first.

        // There can't be any new subtrees if the current index is strictly lower.
        if index < prev_index {
            return false;
        }

        // There is at least one new subtree, even if there is a spurious index difference.
        if index_difference > 1 {
            return true;
        }

        // If the indexes are equal, there can only be a new subtree if `self` just completed it.
        if index == prev_index {
            return self.is_complete_subtree();
        }

        // If `self` is the next index, check if the last note completed a subtree.
        if self.is_complete_subtree() {
            return true;
        }

        // Then check for spurious index differences.
        //
        // There is one new subtree somewhere in the trees. It is either:
        // - a new subtree at the end of the previous tree, or
        // - a new subtree in this tree (but not at the end).
        //
        // Spurious index differences happen because the subtree index only increases when the
        // first note is added to the new subtree. So we need to exclude subtrees completed by the
        // last note commitment in the previous tree.
        //
        // We also need to exclude empty previous subtrees, because the index changes to zero when
        // the first note is added, but a subtree wasn't completed.
        if prev_tree.is_complete_subtree() || prev_index == -1 {
            return false;
        }

        // A new subtree was completed by a note commitment that isn't in the previous tree.
        true
    }

    /// Returns true if the most recently appended leaf completes the subtree
    pub fn is_complete_subtree(&self) -> bool {
        let Some(tree) = self.frontier() else {
            // An empty tree can't be a complete subtree.
            return false;
        };

        tree.position()
            .is_complete_subtree(TRACKED_SUBTREE_HEIGHT.into())
    }

    /// Returns the subtree index at [`TRACKED_SUBTREE_HEIGHT`].
    /// This is the number of complete or incomplete subtrees that are currently in the tree.
    /// Returns `None` if the tree is empty.
    #[allow(clippy::unwrap_in_result)]
    pub fn subtree_index(&self) -> Option<NoteCommitmentSubtreeIndex> {
        let tree = self.frontier()?;

        let index = incrementalmerkletree::Address::above_position(
            TRACKED_SUBTREE_HEIGHT.into(),
            tree.position(),
        )
        .index()
        .try_into()
        .expect("fits in u16");

        Some(index)
    }

    /// Returns the number of leaf nodes required to complete the subtree at
    /// [`TRACKED_SUBTREE_HEIGHT`].
    ///
    /// Returns `2^TRACKED_SUBTREE_HEIGHT` if the tree is empty.
    #[allow(clippy::unwrap_in_result)]
    pub fn remaining_subtree_leaf_nodes(&self) -> usize {
        let remaining = match self.frontier() {
            // If the subtree has at least one leaf node, the remaining number of nodes can be
            // calculated using the maximum subtree position and the current position.
            Some(tree) => {
                let max_position = incrementalmerkletree::Address::above_position(
                    TRACKED_SUBTREE_HEIGHT.into(),
                    tree.position(),
                )
                .max_position();

                max_position - tree.position().into()
            }
            // If the subtree has no nodes, the remaining number of nodes is the number of nodes in
            // a subtree.
            None => {
                let subtree_address = incrementalmerkletree::Address::above_position(
                    TRACKED_SUBTREE_HEIGHT.into(),
                    // This position is guaranteed to be in the first subtree.
                    0.into(),
                );

                assert_eq!(
                    subtree_address.position_range_start(),
                    0.into(),
                    "address is not in the first subtree"
                );

                subtree_address.position_range_end()
            }
        };

        u64::from(remaining).try_into().expect("fits in usize")
    }

    /// Returns subtree index and root if the most recently appended leaf completes the subtree
    pub fn completed_subtree_index_and_root(&self) -> Option<(NoteCommitmentSubtreeIndex, Node)> {
        if !self.is_complete_subtree() {
            return None;
        }

        let index = self.subtree_index()?;
        let root = self.frontier()?.root(Some(TRACKED_SUBTREE_HEIGHT.into()));

        Some((index, root))
    }

    /// Returns the current root of the tree, used as an anchor in Orchard
    /// shielded transactions.
    pub fn root(&self) -> Root {
        if let Some(root) = self.cached_root() {
            // Return cached root.
            return root;
        }

        // Get exclusive access, compute the root, and cache it.
        let mut write_root = self
            .cached_root
            .write()
            .expect("a thread that previously held exclusive lock access panicked");
        let read_root = write_root.as_ref().cloned();
        match read_root {
            // Another thread got write access first, return cached root.
            Some(root) => root,
            None => {
                // Compute root and cache it.
                let root = self.recalculate_root();
                *write_root = Some(root);
                root
            }
        }
    }

    /// Returns the current root of the tree, if it has already been cached.
    #[allow(clippy::unwrap_in_result)]
    pub fn cached_root(&self) -> Option<Root> {
        *self
            .cached_root
            .read()
            .expect("a thread that previously held exclusive lock access panicked")
    }

    /// Calculates and returns the current root of the tree, ignoring any caching.
    pub fn recalculate_root(&self) -> Root {
        Root(self.inner.root().0)
    }

    /// Get the Pallas-based Sinsemilla hash / root node of this merkle tree of
    /// note commitments.
    pub fn hash(&self) -> [u8; 32] {
        self.root().into()
    }

    /// An as-yet unused Orchard note commitment tree leaf node.
    ///
    /// Distinct for Orchard, a distinguished hash value of:
    ///
    /// Uncommitted^Orchard = I2LEBSP_l_MerkleOrchard(2)
    pub fn uncommitted() -> pallas::Base {
        pallas::Base::one().double()
    }

    /// Count of note commitments added to the tree.
    ///
    /// For Orchard, the tree is capped at 2^32.
    pub fn count(&self) -> u64 {
        self.inner
            .value()
            .map_or(0, |x| u64::from(x.position()) + 1)
    }

    /// Checks if the tree roots and inner data structures of `self` and `other` are equal.
    ///
    /// # Panics
    ///
    /// If they aren't equal, with a message explaining the differences.
    ///
    /// Only for use in tests.
    #[cfg(any(test, feature = "proptest-impl"))]
    pub fn assert_frontier_eq(&self, other: &Self) {
        // It's technically ok for the cached root not to be preserved,
        // but it can result in expensive cryptographic operations,
        // so we fail the tests if it happens.
        assert_eq!(self.cached_root(), other.cached_root());

        // Check the data in the internal data structure
        assert_eq!(self.inner, other.inner);

        // Check the RPC serialization format (not the same as the Zebra database format)
        assert_eq!(self.to_rpc_bytes(), other.to_rpc_bytes());
    }

    /// Serializes [`Self`] to a format compatible with `zcashd`'s RPCs.
    pub fn to_rpc_bytes(&self) -> Vec<u8> {
        // Convert the tree from [`Frontier`](bridgetree::Frontier) to
        // [`CommitmentTree`](merkle_tree::CommitmentTree).
        let tree = incrementalmerkletree::frontier::CommitmentTree::from_frontier(&self.inner);

        let mut rpc_bytes = vec![];

        zcash_primitives::merkle_tree::write_commitment_tree(&tree, &mut rpc_bytes)
            .expect("serializable tree");

        rpc_bytes
    }
}

impl Clone for NoteCommitmentTree {
    /// Clones the inner tree, and creates a new `RwLock` with the cloned root data.
    fn clone(&self) -> Self {
        let cached_root = self.cached_root();

        Self {
            inner: self.inner.clone(),
            cached_root: std::sync::RwLock::new(cached_root),
        }
    }
}

impl Default for NoteCommitmentTree {
    fn default() -> Self {
        Self {
            inner: bridgetree::Frontier::empty(),
            cached_root: Default::default(),
        }
    }
}

impl Eq for NoteCommitmentTree {}

impl PartialEq for NoteCommitmentTree {
    fn eq(&self, other: &Self) -> bool {
        if let (Some(root), Some(other_root)) = (self.cached_root(), other.cached_root()) {
            // Use cached roots if available
            root == other_root
        } else {
            // Avoid expensive root recalculations which use multiple cryptographic hashes
            self.inner == other.inner
        }
    }
}

impl From<Vec<pallas::Base>> for NoteCommitmentTree {
    /// Compute the tree from a whole bunch of note commitments at once.
    fn from(values: Vec<pallas::Base>) -> Self {
        let mut tree = Self::default();

        if values.is_empty() {
            return tree;
        }

        for cm_x in values {
            let _ = tree.append(cm_x);
        }

        tree
    }
}