zebra_network/peer_set/inventory_registry.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
//! Inventory Registry Implementation
//!
//! [RFC]: https://zebra.zfnd.org/dev/rfcs/0003-inventory-tracking.html
use std::{
pin::Pin,
task::{Context, Poll},
};
use futures::{FutureExt, Stream, StreamExt};
use indexmap::IndexMap;
use tokio::{
sync::broadcast,
time::{self, Instant},
};
use tokio_stream::wrappers::{errors::BroadcastStreamRecvError, BroadcastStream, IntervalStream};
use zebra_chain::serialization::AtLeastOne;
use crate::{
constants::INVENTORY_ROTATION_INTERVAL,
protocol::{external::InventoryHash, internal::InventoryResponse},
BoxError, PeerSocketAddr,
};
use self::update::Update;
/// Underlying type for the alias InventoryStatus::*
use InventoryResponse::*;
pub mod update;
#[cfg(test)]
mod tests;
/// The maximum number of inventory hashes we will track from a single peer.
///
/// # Security
///
/// This limits known memory denial of service attacks like <https://invdos.net/> to a total of:
/// ```text
/// 1000 inventory * 2 maps * 32-64 bytes per inventory = less than 1 MB
/// 1000 inventory * 70 peers * 2 maps * 6-18 bytes per address = up to 3 MB
/// ```
///
/// Since the inventory registry is an efficiency optimisation, which falls back to a
/// random peer, we only need to track a small number of hashes for available inventory.
///
/// But we want to be able to track a significant amount of missing inventory,
/// to limit queries for globally missing inventory.
//
// TODO: split this into available (25) and missing (1000 or more?)
pub const MAX_INV_PER_MAP: usize = 1000;
/// The maximum number of peers we will track inventory for.
///
/// # Security
///
/// This limits known memory denial of service attacks. See [`MAX_INV_PER_MAP`] for details.
///
/// Since the inventory registry is an efficiency optimisation, which falls back to a
/// random peer, we only need to track a small number of peers per inv for available inventory.
///
/// But we want to be able to track missing inventory for almost all our peers,
/// so we only query a few peers for inventory that is genuinely missing from the network.
//
// TODO: split this into available (25) and missing (70)
pub const MAX_PEERS_PER_INV: usize = 70;
/// A peer inventory status, which tracks a hash for both available and missing inventory.
pub type InventoryStatus<T> = InventoryResponse<T, T>;
/// A peer inventory status change, used in the inventory status channel.
///
/// For performance reasons, advertisements should only be tracked
/// for hashes that are rare on the network.
/// So Zebra only tracks single-block inventory messages.
///
/// For security reasons, all `notfound` rejections should be tracked.
/// This also helps with performance, if the hash is rare on the network.
pub type InventoryChange = InventoryStatus<(AtLeastOne<InventoryHash>, PeerSocketAddr)>;
/// An internal marker used in inventory status hash maps.
type InventoryMarker = InventoryStatus<()>;
/// An Inventory Registry for tracking recent inventory advertisements and missing inventory.
///
/// For more details please refer to the [RFC].
///
/// [RFC]: https://zebra.zfnd.org/dev/rfcs/0003-inventory-tracking.html
pub struct InventoryRegistry {
/// Map tracking the latest inventory status from the current interval
/// period.
//
// TODO: split maps into available and missing, so we can limit them separately.
current: IndexMap<InventoryHash, IndexMap<PeerSocketAddr, InventoryMarker>>,
/// Map tracking inventory statuses from the previous interval period.
prev: IndexMap<InventoryHash, IndexMap<PeerSocketAddr, InventoryMarker>>,
/// Stream of incoming inventory statuses to register.
inv_stream: Pin<
Box<dyn Stream<Item = Result<InventoryChange, BroadcastStreamRecvError>> + Send + 'static>,
>,
/// Interval tracking when we should next rotate our maps.
interval: IntervalStream,
}
impl std::fmt::Debug for InventoryRegistry {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("InventoryRegistry")
.field("current", &self.current)
.field("prev", &self.prev)
.finish()
}
}
impl InventoryChange {
/// Returns a new available inventory change from a single hash.
pub fn new_available(hash: InventoryHash, peer: PeerSocketAddr) -> Self {
InventoryStatus::Available((AtLeastOne::from_one(hash), peer))
}
/// Returns a new missing inventory change from a single hash.
#[allow(dead_code)]
pub fn new_missing(hash: InventoryHash, peer: PeerSocketAddr) -> Self {
InventoryStatus::Missing((AtLeastOne::from_one(hash), peer))
}
/// Returns a new available multiple inventory change, if `hashes` contains at least one change.
pub fn new_available_multi<'a>(
hashes: impl IntoIterator<Item = &'a InventoryHash>,
peer: PeerSocketAddr,
) -> Option<Self> {
let mut hashes: Vec<InventoryHash> = hashes.into_iter().copied().collect();
// # Security
//
// Don't send more hashes than we're going to store.
// It doesn't matter which hashes we choose, because this is an efficiency optimisation.
//
// This limits known memory denial of service attacks to:
// `1000 hashes * 200 peers/channel capacity * 32-64 bytes = up to 12 MB`
hashes.truncate(MAX_INV_PER_MAP);
let hashes = hashes.try_into().ok();
hashes.map(|hashes| InventoryStatus::Available((hashes, peer)))
}
/// Returns a new missing multiple inventory change, if `hashes` contains at least one change.
pub fn new_missing_multi<'a>(
hashes: impl IntoIterator<Item = &'a InventoryHash>,
peer: PeerSocketAddr,
) -> Option<Self> {
let mut hashes: Vec<InventoryHash> = hashes.into_iter().copied().collect();
// # Security
//
// Don't send more hashes than we're going to store.
// It doesn't matter which hashes we choose, because this is an efficiency optimisation.
hashes.truncate(MAX_INV_PER_MAP);
let hashes = hashes.try_into().ok();
hashes.map(|hashes| InventoryStatus::Missing((hashes, peer)))
}
}
impl<T> InventoryStatus<T> {
/// Get a marker for the status, without any associated data.
pub fn marker(&self) -> InventoryMarker {
self.as_ref().map(|_inner| ())
}
/// Maps an `InventoryStatus<T>` to `InventoryStatus<U>` by applying a function to a contained value.
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> InventoryStatus<U> {
// Based on Option::map from https://doc.rust-lang.org/src/core/option.rs.html#844
match self {
Available(item) => Available(f(item)),
Missing(item) => Missing(f(item)),
}
}
}
impl<T: Clone> InventoryStatus<T> {
/// Returns a clone of the inner item, regardless of status.
pub fn to_inner(&self) -> T {
match self {
Available(item) | Missing(item) => item.clone(),
}
}
}
impl InventoryRegistry {
/// Returns a new Inventory Registry for `inv_stream`.
pub fn new(inv_stream: broadcast::Receiver<InventoryChange>) -> Self {
let interval = INVENTORY_ROTATION_INTERVAL;
// Don't do an immediate rotation, current and prev are already empty.
let mut interval = tokio::time::interval_at(Instant::now() + interval, interval);
// # Security
//
// If the rotation time is late, execute as many ticks as needed to catch up.
// This is a tradeoff between memory usage and quickly accessing remote data
// under heavy load. Bursting prioritises lower memory usage.
//
// Skipping or delaying could keep peer inventory in memory for a longer time,
// further increasing memory load or delays due to virtual memory swapping.
interval.set_missed_tick_behavior(time::MissedTickBehavior::Burst);
Self {
current: Default::default(),
prev: Default::default(),
inv_stream: BroadcastStream::new(inv_stream).boxed(),
interval: IntervalStream::new(interval),
}
}
/// Returns an iterator over addrs of peers that have recently advertised `hash` in their inventory.
pub fn advertising_peers(&self, hash: InventoryHash) -> impl Iterator<Item = &PeerSocketAddr> {
self.status_peers(hash)
.filter_map(|addr_status| addr_status.available())
}
/// Returns an iterator over addrs of peers that have recently missed `hash` in their inventory.
#[allow(dead_code)]
pub fn missing_peers(&self, hash: InventoryHash) -> impl Iterator<Item = &PeerSocketAddr> {
self.status_peers(hash)
.filter_map(|addr_status| addr_status.missing())
}
/// Returns an iterator over peer inventory statuses for `hash`.
///
/// Prefers current statuses to previously rotated statuses for the same peer.
pub fn status_peers(
&self,
hash: InventoryHash,
) -> impl Iterator<Item = InventoryStatus<&PeerSocketAddr>> {
let prev = self.prev.get(&hash);
let current = self.current.get(&hash);
// # Security
//
// Prefer `current` statuses for the same peer over previously rotated statuses.
// This makes sure Zebra is using the most up-to-date network information.
let prev = prev
.into_iter()
.flatten()
.filter(move |(addr, _status)| !self.has_current_status(hash, **addr));
let current = current.into_iter().flatten();
current
.chain(prev)
.map(|(addr, status)| status.map(|()| addr))
}
/// Returns true if there is a current status entry for `hash` and `addr`.
pub fn has_current_status(&self, hash: InventoryHash, addr: PeerSocketAddr) -> bool {
self.current
.get(&hash)
.and_then(|current| current.get(&addr))
.is_some()
}
/// Returns an iterator over peer inventory status hashes.
///
/// Yields current statuses first, then previously rotated statuses.
/// This can include multiple statuses for the same hash.
#[allow(dead_code)]
pub fn status_hashes(
&self,
) -> impl Iterator<Item = (&InventoryHash, &IndexMap<PeerSocketAddr, InventoryMarker>)> {
self.current.iter().chain(self.prev.iter())
}
/// Returns a future that waits for new registry updates.
#[allow(dead_code)]
pub fn update(&mut self) -> Update {
Update::new(self)
}
/// Drive periodic inventory tasks.
///
/// Rotates the inventory HashMaps on every timer tick.
/// Drains the inv_stream channel and registers all advertised inventory.
///
/// Returns an error if the inventory channel is closed.
///
/// Otherwise, returns `Ok` if it performed at least one update or rotation, or `Poll::Pending`
/// if there was no inventory change. Always registers a wakeup for the next inventory update
/// or rotation, even when it returns `Ok`.
pub fn poll_inventory(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), BoxError>> {
let mut result = Poll::Pending;
// # Correctness
//
// Registers the current task for wakeup when the timer next becomes ready.
// (But doesn't return, because we also want to register the task for wakeup when more
// inventory arrives.)
//
// # Security
//
// Only rotate one inventory per peer request, to give the next inventory
// time to gather some peer advertisements. This is a tradeoff between
// memory usage and quickly accessing remote data under heavy load.
//
// This prevents a burst edge case where all inventory is emptied after
// two interval ticks are delayed.
if Pin::new(&mut self.interval).poll_next(cx).is_ready() {
self.rotate();
result = Poll::Ready(Ok(()));
}
// This module uses a broadcast channel instead of an mpsc channel, even
// though there's a single consumer of inventory advertisements, because
// the broadcast channel has ring-buffer behavior: when the channel is
// full, sending a new message displaces the oldest message in the
// channel.
//
// This is the behavior we want for inventory advertisements, because we
// want to have a bounded buffer of unprocessed advertisements, and we
// want to prioritize new inventory (which is likely only at a specific
// peer) over old inventory (which is likely more widely distributed).
//
// The broadcast channel reports dropped messages by returning
// `RecvError::Lagged`. It's crucial that we handle that error here
// rather than propagating it through the peer set's Service::poll_ready
// implementation, where reporting a failure means reporting a permanent
// failure of the peer set.
// Returns Pending if all messages are processed, but the channel could get more.
loop {
let channel_result = self.inv_stream.next().poll_unpin(cx);
match channel_result {
Poll::Ready(Some(Ok(change))) => {
self.register(change);
result = Poll::Ready(Ok(()));
}
Poll::Ready(Some(Err(BroadcastStreamRecvError::Lagged(count)))) => {
// This isn't a fatal inventory error, it's expected behaviour when Zebra is
// under load from peers.
metrics::counter!("pool.inventory.dropped").increment(1);
metrics::counter!("pool.inventory.dropped.messages").increment(count);
// If this message happens a lot, we should improve inventory registry
// performance, or poll the registry or peer set in a separate task.
info!(count, "dropped lagged inventory advertisements");
}
Poll::Ready(None) => {
// If the channel is empty and returns None, all senders, including the one in
// the handshaker, have been dropped, which really is a permanent failure.
result = Poll::Ready(Err(broadcast::error::RecvError::Closed.into()));
}
Poll::Pending => {
break;
}
}
}
result
}
/// Record the given inventory `change` for the peer `addr`.
///
/// `Missing` markers are not updated until the registry rotates, for security reasons.
fn register(&mut self, change: InventoryChange) {
let new_status = change.marker();
let (invs, addr) = change.to_inner();
for inv in invs {
use InventoryHash::*;
assert!(
matches!(inv, Block(_) | Tx(_) | Wtx(_)),
"unexpected inventory type: {inv:?} from peer: {addr:?}",
);
let hash_peers = self.current.entry(inv).or_default();
// # Security
//
// Prefer `missing` over `advertised`, so malicious peers can't reset their own entries,
// and funnel multiple failing requests to themselves.
if let Some(old_status) = hash_peers.get(&addr) {
if old_status.is_missing() && new_status.is_available() {
debug!(?new_status, ?old_status, ?addr, ?inv, "skipping new status");
continue;
}
debug!(
?new_status,
?old_status,
?addr,
?inv,
"keeping both new and old status"
);
}
let replaced_status = hash_peers.insert(addr, new_status);
debug!(
?new_status,
?replaced_status,
?addr,
?inv,
"inserted new status"
);
// # Security
//
// Limit the number of stored peers per hash, removing the oldest entries,
// because newer entries are likely to be more relevant.
//
// TODO: do random or weighted random eviction instead?
if hash_peers.len() > MAX_PEERS_PER_INV {
// Performance: `MAX_PEERS_PER_INV` is small, so O(n) performance is acceptable.
hash_peers.shift_remove_index(0);
}
// # Security
//
// Limit the number of stored inventory hashes, removing the oldest entries,
// because newer entries are likely to be more relevant.
//
// TODO: do random or weighted random eviction instead?
if self.current.len() > MAX_INV_PER_MAP {
// Performance: `MAX_INV_PER_MAP` is small, so O(n) performance is acceptable.
self.current.shift_remove_index(0);
}
}
}
/// Replace the prev HashMap with current's and replace current with an empty
/// HashMap
fn rotate(&mut self) {
self.prev = std::mem::take(&mut self.current);
}
}