zebra_state/service/finalized_state/disk_format/upgrade/
add_subtrees.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
//! Fully populate the Sapling and Orchard note commitment subtrees for existing blocks in the database.

use std::sync::{mpsc, Arc};

use hex_literal::hex;
use itertools::Itertools;
use tracing::instrument;

use zebra_chain::{
    block::Height,
    orchard,
    parallel::tree::NoteCommitmentTrees,
    parameters::Network::*,
    sapling,
    subtree::{NoteCommitmentSubtree, NoteCommitmentSubtreeIndex},
};

use crate::service::finalized_state::{
    disk_format::upgrade::CancelFormatChange, DiskWriteBatch, ZebraDb,
};

/// Runs disk format upgrade for adding Sapling and Orchard note commitment subtrees to database.
///
/// Trees are added to the database in reverse height order, so that wallets can sync correctly
/// while the upgrade is running.
///
/// Returns `Ok` if the upgrade completed, and `Err` if it was cancelled.
#[allow(clippy::unwrap_in_result)]
#[instrument(skip(upgrade_db, cancel_receiver))]
pub fn run(
    initial_tip_height: Height,
    upgrade_db: &ZebraDb,
    cancel_receiver: &mpsc::Receiver<CancelFormatChange>,
) -> Result<(), CancelFormatChange> {
    // # Consensus
    //
    // Zebra stores exactly one note commitment tree for every block with sapling notes.
    // (It also stores the empty note commitment tree for the genesis block, but we skip that.)
    //
    // The consensus rules limit blocks to less than 2^16 sapling and 2^16 orchard outputs. So a
    // block can't complete multiple level 16 subtrees (or complete an entire subtree by itself).
    // Currently, with 2MB blocks and v4/v5 sapling and orchard output sizes, the subtree index can
    // increase by at most 1 every ~20 blocks.
    //
    // # Compatibility
    //
    // Because wallets search backwards from the chain tip, subtrees need to be added to the
    // database in reverse height order. (Tip first, genesis last.)
    //
    // Otherwise, wallets that sync during the upgrade will be missing some notes.

    // Generate a list of sapling subtree inputs: previous and current trees, and their end heights.
    let subtrees = upgrade_db
        .sapling_tree_by_reversed_height_range(..=initial_tip_height)
        // We need both the tree and its previous tree for each shielded block.
        .tuple_windows()
        // Because the iterator is reversed, the larger tree is first.
        .map(|((end_height, tree), (prev_end_height, prev_tree))| {
            (prev_end_height, prev_tree, end_height, tree)
        })
        // Find new subtrees.
        .filter(|(_prev_end_height, prev_tree, _end_height, tree)| {
            tree.contains_new_subtree(prev_tree)
        });

    for (prev_end_height, prev_tree, end_height, tree) in subtrees {
        // Return early if the upgrade is cancelled.
        if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
            return Err(CancelFormatChange);
        }

        let subtree =
            calculate_sapling_subtree(upgrade_db, prev_end_height, prev_tree, end_height, tree);
        write_sapling_subtree(upgrade_db, subtree);
    }

    // Generate a list of orchard subtree inputs: previous and current trees, and their end heights.
    let subtrees = upgrade_db
        .orchard_tree_by_reversed_height_range(..=initial_tip_height)
        // We need both the tree and its previous tree for each shielded block.
        .tuple_windows()
        // Because the iterator is reversed, the larger tree is first.
        .map(|((end_height, tree), (prev_end_height, prev_tree))| {
            (prev_end_height, prev_tree, end_height, tree)
        })
        // Find new subtrees.
        .filter(|(_prev_end_height, prev_tree, _end_height, tree)| {
            tree.contains_new_subtree(prev_tree)
        });

    for (prev_end_height, prev_tree, end_height, tree) in subtrees {
        // Return early if the upgrade is cancelled.
        if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
            return Err(CancelFormatChange);
        }

        let subtree =
            calculate_orchard_subtree(upgrade_db, prev_end_height, prev_tree, end_height, tree);
        write_orchard_subtree(upgrade_db, subtree);
    }

    Ok(())
}

/// Reset data from previous upgrades. This data can be complete or incomplete.
///
/// Returns `Ok` if the upgrade completed, and `Err` if it was cancelled.
#[allow(clippy::unwrap_in_result)]
#[instrument(skip(upgrade_db, cancel_receiver))]
pub fn reset(
    _initial_tip_height: Height,
    upgrade_db: &ZebraDb,
    cancel_receiver: &mpsc::Receiver<CancelFormatChange>,
) -> Result<(), CancelFormatChange> {
    // Return early if the upgrade is cancelled.
    if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
        return Err(CancelFormatChange);
    }

    // This doesn't delete the maximum index, but the consensus rules make that subtree impossible.
    // (Adding a note to a full note commitment tree is an error.)
    //
    // TODO: convert zs_delete_range() to take std::ops::RangeBounds, and delete the upper bound.
    let mut batch = DiskWriteBatch::new();
    batch.delete_range_sapling_subtree(upgrade_db, 0.into(), u16::MAX.into());
    upgrade_db
        .write_batch(batch)
        .expect("deleting old sapling note commitment subtrees is a valid database operation");

    if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
        return Err(CancelFormatChange);
    }

    let mut batch = DiskWriteBatch::new();
    batch.delete_range_orchard_subtree(upgrade_db, 0.into(), u16::MAX.into());
    upgrade_db
        .write_batch(batch)
        .expect("deleting old orchard note commitment subtrees is a valid database operation");

    Ok(())
}

/// Quickly check that the first calculated subtree is correct.
///
/// This allows us to fail the upgrade quickly in tests and during development,
/// rather than waiting ~20 minutes to see if it failed.
///
/// This check runs the first subtree calculation, but it doesn't read the subtree data in the
/// database. So it can be run before the upgrade is started.
pub fn subtree_format_calculation_pre_checks(db: &ZebraDb) -> Result<(), String> {
    // Check the entire format before returning any errors.
    let sapling_result = quick_check_sapling_subtrees(db);
    let orchard_result = quick_check_orchard_subtrees(db);

    if sapling_result.is_err() || orchard_result.is_err() {
        let err = Err(format!(
            "missing or bad first subtree: sapling: {sapling_result:?}, orchard: {orchard_result:?}"
        ));
        warn!(?err);
        return err;
    }

    Ok(())
}

/// A quick test vector that allows us to fail an incorrect upgrade within a few seconds.
fn first_sapling_mainnet_subtree() -> NoteCommitmentSubtree<sapling::tree::Node> {
    // This test vector was generated using the command:
    // ```sh
    // zcash-cli z_getsubtreesbyindex sapling 0 1
    // ```
    NoteCommitmentSubtree {
        index: 0.into(),
        root: hex!("754bb593ea42d231a7ddf367640f09bbf59dc00f2c1d2003cc340e0c016b5b13")
            .as_slice()
            .try_into()
            .expect("test vector is valid"),
        end_height: Height(558822),
    }
}

/// A quick test vector that allows us to fail an incorrect upgrade within a few seconds.
fn first_orchard_mainnet_subtree() -> NoteCommitmentSubtree<orchard::tree::Node> {
    // This test vector was generated using the command:
    // ```sh
    // zcash-cli z_getsubtreesbyindex orchard 0 1
    // ```
    NoteCommitmentSubtree {
        index: 0.into(),
        root: hex!("d4e323b3ae0cabfb6be4087fec8c66d9a9bbfc354bf1d9588b6620448182063b")
            .as_slice()
            .try_into()
            .expect("test vector is valid"),
        end_height: Height(1707429),
    }
}

/// Quickly check that the first calculated sapling subtree is correct.
///
/// This allows us to fail the upgrade quickly in tests and during development,
/// rather than waiting ~20 minutes to see if it failed.
///
/// Returns an error if a note commitment subtree is missing or incorrect.
fn quick_check_sapling_subtrees(db: &ZebraDb) -> Result<(), &'static str> {
    // We check the first sapling subtree on mainnet, so skip this check if it isn't available.
    if db.network() != Mainnet {
        return Ok(());
    }

    let Some(NoteCommitmentSubtreeIndex(tip_subtree_index)) =
        db.sapling_tree_for_tip().subtree_index()
    else {
        return Ok(());
    };

    if tip_subtree_index == 0 && !db.sapling_tree_for_tip().is_complete_subtree() {
        return Ok(());
    }

    // Find the first complete subtree: previous and current trees, and their end heights.
    let first_complete_subtree = db
        .sapling_tree_by_height_range(..)
        // We need both the tree and its previous tree for each shielded block.
        .tuple_windows()
        .map(|((prev_end_height, prev_tree), (end_height, tree))| {
            (prev_end_height, prev_tree, end_height, tree)
        })
        .find(|(_prev_end_height, prev_tree, _end_height, tree)| {
            tree.contains_new_subtree(prev_tree)
        });

    let Some((prev_end_height, prev_tree, end_height, tree)) = first_complete_subtree else {
        let result = Err("iterator did not find complete subtree, but the tree has it");
        error!(?result);
        return result;
    };

    // Creating this test vector involves a cryptographic check, so only do it once.
    let expected_subtree = first_sapling_mainnet_subtree();

    let db_subtree = calculate_sapling_subtree(db, prev_end_height, prev_tree, end_height, tree);

    if db_subtree != expected_subtree {
        let result = Err("first subtree did not match expected test vector");
        error!(?result, ?db_subtree, ?expected_subtree);
        return result;
    }

    Ok(())
}

/// Quickly check that the first calculated orchard subtree is correct.
///
/// This allows us to fail the upgrade quickly in tests and during development,
/// rather than waiting ~20 minutes to see if it failed.
///
/// Returns an error if a note commitment subtree is missing or incorrect.
fn quick_check_orchard_subtrees(db: &ZebraDb) -> Result<(), &'static str> {
    // We check the first orchard subtree on mainnet, so skip this check if it isn't available.
    if db.network() != Mainnet {
        return Ok(());
    }

    let Some(NoteCommitmentSubtreeIndex(tip_subtree_index)) =
        db.orchard_tree_for_tip().subtree_index()
    else {
        return Ok(());
    };

    if tip_subtree_index == 0 && !db.orchard_tree_for_tip().is_complete_subtree() {
        return Ok(());
    }

    // Find the first complete subtree: previous and current trees, and their end heights.
    let first_complete_subtree = db
        .orchard_tree_by_height_range(..)
        // We need both the tree and its previous tree for each shielded block.
        .tuple_windows()
        .map(|((prev_end_height, prev_tree), (end_height, tree))| {
            (prev_end_height, prev_tree, end_height, tree)
        })
        .find(|(_prev_end_height, prev_tree, _end_height, tree)| {
            tree.contains_new_subtree(prev_tree)
        });

    let Some((prev_end_height, prev_tree, end_height, tree)) = first_complete_subtree else {
        let result = Err("iterator did not find complete subtree, but the tree has it");
        error!(?result);
        return result;
    };

    // Creating this test vector involves a cryptographic check, so only do it once.
    let expected_subtree = first_orchard_mainnet_subtree();

    let db_subtree = calculate_orchard_subtree(db, prev_end_height, prev_tree, end_height, tree);

    if db_subtree != expected_subtree {
        let result = Err("first subtree did not match expected test vector");
        error!(?result, ?db_subtree, ?expected_subtree);
        return result;
    }

    Ok(())
}

/// Check that note commitment subtrees were correctly added.
pub fn subtree_format_validity_checks_detailed(
    db: &ZebraDb,
    cancel_receiver: &mpsc::Receiver<CancelFormatChange>,
) -> Result<Result<(), String>, CancelFormatChange> {
    // This is redundant in some code paths, but not in others. But it's quick anyway.
    let quick_result = subtree_format_calculation_pre_checks(db);

    // Check the entire format before returning any errors.
    let sapling_result = check_sapling_subtrees(db, cancel_receiver)?;
    let orchard_result = check_orchard_subtrees(db, cancel_receiver)?;

    if quick_result.is_err() || sapling_result.is_err() || orchard_result.is_err() {
        let err = Err(format!(
            "missing or invalid subtree(s): \
             quick: {quick_result:?}, sapling: {sapling_result:?}, orchard: {orchard_result:?}"
        ));
        warn!(?err);
        return Ok(err);
    }

    Ok(Ok(()))
}

/// Check that Sapling note commitment subtrees were correctly added.
///
/// Returns an error if a note commitment subtree is missing or incorrect.
fn check_sapling_subtrees(
    db: &ZebraDb,
    cancel_receiver: &mpsc::Receiver<CancelFormatChange>,
) -> Result<Result<(), &'static str>, CancelFormatChange> {
    let Some(NoteCommitmentSubtreeIndex(mut first_incomplete_subtree_index)) =
        db.sapling_tree_for_tip().subtree_index()
    else {
        return Ok(Ok(()));
    };

    // If there are no incomplete subtrees in the tree, also expect a subtree for the final index.
    if db.sapling_tree_for_tip().is_complete_subtree() {
        first_incomplete_subtree_index += 1;
    }

    let mut result = Ok(());
    for index in 0..first_incomplete_subtree_index {
        // Return early if the format check is cancelled.
        if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
            return Err(CancelFormatChange);
        }

        // Check that there's a continuous range of subtrees from index [0, first_incomplete_subtree_index)
        let Some(subtree) = db.sapling_subtree_by_index(index) else {
            result = Err("missing subtree");
            error!(?result, index);
            continue;
        };

        // Check that there was a sapling note at the subtree's end height.
        let Some(tree) = db.sapling_tree_by_height(&subtree.end_height) else {
            result = Err("missing note commitment tree at subtree completion height");
            error!(?result, ?subtree.end_height);
            continue;
        };

        // Check the index and root if the sapling note commitment tree at this height is a complete subtree.
        if let Some((index, node)) = tree.completed_subtree_index_and_root() {
            if subtree.index != index {
                result = Err("completed subtree indexes should match");
                error!(?result);
            }

            if subtree.root != node {
                result = Err("completed subtree roots should match");
                error!(?result);
            }
        }
        // Check that the final note has a greater subtree index if it didn't complete a subtree.
        else {
            let prev_height = subtree
                .end_height
                .previous()
                .expect("Note commitment subtrees should not end at the minimal height.");

            let Some(prev_tree) = db.sapling_tree_by_height(&prev_height) else {
                result = Err("missing note commitment tree below subtree completion height");
                error!(?result, ?subtree.end_height);
                continue;
            };

            let prev_subtree_index = prev_tree.subtree_index();
            let subtree_index = tree.subtree_index();
            if subtree_index <= prev_subtree_index {
                result =
                    Err("note commitment tree at end height should have incremented subtree index");
                error!(?result, ?subtree_index, ?prev_subtree_index,);
            }
        }
    }

    let mut subtree_count = 0;
    for (index, height, tree) in db
        .sapling_tree_by_height_range(..)
        // Exclude empty sapling tree and add subtree indexes
        .filter_map(|(height, tree)| Some((tree.subtree_index()?, height, tree)))
        // Exclude heights that don't complete a subtree and count completed subtrees
        .filter_map(|(subtree_index, height, tree)| {
            if tree.is_complete_subtree() || subtree_index.0 > subtree_count {
                let subtree_index = subtree_count;
                subtree_count += 1;
                Some((subtree_index, height, tree))
            } else {
                None
            }
        })
    {
        // Return early if the format check is cancelled.
        if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
            return Err(CancelFormatChange);
        }

        // Check that there's an entry for every completed sapling subtree root in all sapling trees
        let Some(subtree) = db.sapling_subtree_by_index(index) else {
            result = Err("missing subtree");
            error!(?result, index);
            continue;
        };

        // Check that the subtree end height matches that in the sapling trees.
        if subtree.end_height != height {
            let is_complete = tree.is_complete_subtree();
            result = Err("bad sapling subtree end height");
            error!(?result, ?subtree.end_height, ?height, ?index, ?is_complete, );
        }

        // Check the root if the sapling note commitment tree at this height is a complete subtree.
        if let Some((_index, node)) = tree.completed_subtree_index_and_root() {
            if subtree.root != node {
                result = Err("completed subtree roots should match");
                error!(?result);
            }
        }
    }

    if result.is_err() {
        error!(
            ?result,
            ?subtree_count,
            first_incomplete_subtree_index,
            "missing or bad sapling subtrees"
        );
    }

    Ok(result)
}

/// Check that Orchard note commitment subtrees were correctly added.
///
/// Returns an error if a note commitment subtree is missing or incorrect.
fn check_orchard_subtrees(
    db: &ZebraDb,
    cancel_receiver: &mpsc::Receiver<CancelFormatChange>,
) -> Result<Result<(), &'static str>, CancelFormatChange> {
    let Some(NoteCommitmentSubtreeIndex(mut first_incomplete_subtree_index)) =
        db.orchard_tree_for_tip().subtree_index()
    else {
        return Ok(Ok(()));
    };

    // If there are no incomplete subtrees in the tree, also expect a subtree for the final index.
    if db.orchard_tree_for_tip().is_complete_subtree() {
        first_incomplete_subtree_index += 1;
    }

    let mut result = Ok(());
    for index in 0..first_incomplete_subtree_index {
        // Return early if the format check is cancelled.
        if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
            return Err(CancelFormatChange);
        }

        // Check that there's a continuous range of subtrees from index [0, first_incomplete_subtree_index)
        let Some(subtree) = db.orchard_subtree_by_index(index) else {
            result = Err("missing subtree");
            error!(?result, index);
            continue;
        };

        // Check that there was a orchard note at the subtree's end height.
        let Some(tree) = db.orchard_tree_by_height(&subtree.end_height) else {
            result = Err("missing note commitment tree at subtree completion height");
            error!(?result, ?subtree.end_height);
            continue;
        };

        // Check the index and root if the orchard note commitment tree at this height is a complete subtree.
        if let Some((index, node)) = tree.completed_subtree_index_and_root() {
            if subtree.index != index {
                result = Err("completed subtree indexes should match");
                error!(?result);
            }

            if subtree.root != node {
                result = Err("completed subtree roots should match");
                error!(?result);
            }
        }
        // Check that the final note has a greater subtree index if it didn't complete a subtree.
        else {
            let prev_height = subtree
                .end_height
                .previous()
                .expect("Note commitment subtrees should not end at the minimal height.");

            let Some(prev_tree) = db.orchard_tree_by_height(&prev_height) else {
                result = Err("missing note commitment tree below subtree completion height");
                error!(?result, ?subtree.end_height);
                continue;
            };

            let prev_subtree_index = prev_tree.subtree_index();
            let subtree_index = tree.subtree_index();
            if subtree_index <= prev_subtree_index {
                result =
                    Err("note commitment tree at end height should have incremented subtree index");
                error!(?result, ?subtree_index, ?prev_subtree_index,);
            }
        }
    }

    let mut subtree_count = 0;
    for (index, height, tree) in db
        .orchard_tree_by_height_range(..)
        // Exclude empty orchard tree and add subtree indexes
        .filter_map(|(height, tree)| Some((tree.subtree_index()?, height, tree)))
        // Exclude heights that don't complete a subtree and count completed subtrees
        .filter_map(|(subtree_index, height, tree)| {
            if tree.is_complete_subtree() || subtree_index.0 > subtree_count {
                let subtree_index = subtree_count;
                subtree_count += 1;
                Some((subtree_index, height, tree))
            } else {
                None
            }
        })
    {
        // Return early if the format check is cancelled.
        if !matches!(cancel_receiver.try_recv(), Err(mpsc::TryRecvError::Empty)) {
            return Err(CancelFormatChange);
        }

        // Check that there's an entry for every completed orchard subtree root in all orchard trees
        let Some(subtree) = db.orchard_subtree_by_index(index) else {
            result = Err("missing subtree");
            error!(?result, index);
            continue;
        };

        // Check that the subtree end height matches that in the orchard trees.
        if subtree.end_height != height {
            let is_complete = tree.is_complete_subtree();
            result = Err("bad orchard subtree end height");
            error!(?result, ?subtree.end_height, ?height, ?index, ?is_complete, );
        }

        // Check the root if the orchard note commitment tree at this height is a complete subtree.
        if let Some((_index, node)) = tree.completed_subtree_index_and_root() {
            if subtree.root != node {
                result = Err("completed subtree roots should match");
                error!(?result);
            }
        }
    }

    if result.is_err() {
        error!(
            ?result,
            ?subtree_count,
            first_incomplete_subtree_index,
            "missing or bad orchard subtrees"
        );
    }

    Ok(result)
}

/// Calculates a note commitment subtree for Sapling, reading blocks from `read_db` if needed.
///
/// The subtree must be completed by a note commitment in the block at `end_height`.
/// `tree` is the tree for that block, and `prev_tree` is the tree for the previous block.
///
/// `prev_tree` is only used to rebuild the subtree if it was completed without using the last
/// note commitment in the block at `end_height`.
///
/// # Panics
///
/// If a subtree is not completed by a note commitment in the block at `end_height`.
#[must_use = "subtree should be written to the database after it is calculated"]
#[instrument(skip(read_db, prev_tree, tree))]
fn calculate_sapling_subtree(
    read_db: &ZebraDb,
    prev_end_height: Height,
    prev_tree: Arc<sapling::tree::NoteCommitmentTree>,
    end_height: Height,
    tree: Arc<sapling::tree::NoteCommitmentTree>,
) -> NoteCommitmentSubtree<sapling::tree::Node> {
    // If a subtree is completed by a note commitment in the block at `end_height`,
    // then that subtree can be completed in two different ways:
    if let Some((index, node)) = tree.completed_subtree_index_and_root() {
        // If the subtree is completed by the last note commitment in that block,
        // we already have that subtree root available in the tree.
        NoteCommitmentSubtree::new(index, end_height, node)
    } else {
        // If the subtree is completed without using the last note commitment in the block,
        // we need to calculate the subtree root, starting with the tree from the previous block.

        // TODO: move the assertion/panic log string formatting into a separate function?
        let prev_position = prev_tree.position().unwrap_or_else(|| {
            panic!(
                "previous block must have a partial subtree:\n\
                previous subtree:\n\
                height: {prev_end_height:?}\n\
                current subtree:\n\
                height: {end_height:?}"
            )
        });
        let prev_index = prev_tree
            .subtree_index()
            .expect("previous block must have a partial subtree");
        let prev_remaining_notes = prev_tree.remaining_subtree_leaf_nodes();

        let current_position = tree.position().unwrap_or_else(|| {
            panic!(
                "current block must have a subtree:\n\
                previous subtree:\n\
                height: {prev_end_height:?}\n\
                index: {prev_index}\n\
                position: {prev_position}\n\
                remaining: {prev_remaining_notes}\n\
                current subtree:\n\
                height: {end_height:?}"
            )
        });
        let current_index = tree
            .subtree_index()
            .expect("current block must have a subtree");
        let current_remaining_notes = tree.remaining_subtree_leaf_nodes();

        assert_eq!(
            prev_index.0 + 1,
            current_index.0,
            "subtree must have been completed by the current block:\n\
             previous subtree:\n\
             height: {prev_end_height:?}\n\
             index: {prev_index}\n\
             position: {prev_position}\n\
             remaining: {prev_remaining_notes}\n\
             current subtree:\n\
             height: {end_height:?}\n\
             index: {current_index}\n\
             position: {current_position}\n\
             remaining: {current_remaining_notes}"
        );

        // Get the missing notes needed to complete the subtree.
        //
        // TODO: consider just reading the block's transactions from the database file,
        //       because we don't use the block header data at all.
        let block = read_db
            .block(end_height.into())
            .expect("height with note commitment tree should have block");
        let sapling_note_commitments = block
            .sapling_note_commitments()
            .take(prev_remaining_notes)
            .cloned()
            .collect();

        // This takes less than 1 second per tree, so we don't need to make it cancellable.
        let (sapling_nct, subtree) = NoteCommitmentTrees::update_sapling_note_commitment_tree(
            prev_tree,
            sapling_note_commitments,
        )
        .expect("finalized notes should append successfully");

        let (index, node) = subtree.unwrap_or_else(|| {
            panic!(
                "already checked that the block completed a subtree:\n\
                 updated subtree:\n\
                 index: {:?}\n\
                 position: {:?}\n\
                 remaining notes: {}\n\
                 original previous subtree:\n\
                 height: {prev_end_height:?}\n\
                 index: {prev_index}\n\
                 position: {prev_position}\n\
                 remaining: {prev_remaining_notes}\n\
                 original current subtree:\n\
                 height: {end_height:?}\n\
                 index: {current_index}\n\
                 position: {current_position}\n\
                 remaining: {current_remaining_notes}",
                sapling_nct.subtree_index(),
                sapling_nct.position(),
                sapling_nct.remaining_subtree_leaf_nodes(),
            )
        });

        NoteCommitmentSubtree::new(index, end_height, node)
    }
}

/// Calculates a note commitment subtree for Orchard, reading blocks from `read_db` if needed.
///
/// The subtree must be completed by a note commitment in the block at `end_height`.
/// `tree` is the tree for that block, and `prev_tree` is the tree for the previous block.
///
/// `prev_tree` is only used to rebuild the subtree if it was completed without using the last
/// note commitment in the block at `end_height`.
///
/// # Panics
///
/// If a subtree is not completed by a note commitment in the block at `end_height`.
#[must_use = "subtree should be written to the database after it is calculated"]
#[instrument(skip(read_db, prev_tree, tree))]
fn calculate_orchard_subtree(
    read_db: &ZebraDb,
    prev_end_height: Height,
    prev_tree: Arc<orchard::tree::NoteCommitmentTree>,
    end_height: Height,
    tree: Arc<orchard::tree::NoteCommitmentTree>,
) -> NoteCommitmentSubtree<orchard::tree::Node> {
    // If a subtree is completed by a note commitment in the block at `end_height`,
    // then that subtree can be completed in two different ways:
    if let Some((index, node)) = tree.completed_subtree_index_and_root() {
        // If the subtree is completed by the last note commitment in that block,
        // we already have that subtree root available in the tree.
        NoteCommitmentSubtree::new(index, end_height, node)
    } else {
        // If the subtree is completed without using the last note commitment in the block,
        // we need to calculate the subtree root, starting with the tree from the previous block.

        // TODO: move the assertion/panic log string formatting into a separate function?
        let prev_position = prev_tree.position().unwrap_or_else(|| {
            panic!(
                "previous block must have a partial subtree:\n\
                previous subtree:\n\
                height: {prev_end_height:?}\n\
                current subtree:\n\
                height: {end_height:?}"
            )
        });
        let prev_index = prev_tree
            .subtree_index()
            .expect("previous block must have a partial subtree");
        let prev_remaining_notes = prev_tree.remaining_subtree_leaf_nodes();

        let current_position = tree.position().unwrap_or_else(|| {
            panic!(
                "current block must have a subtree:\n\
                previous subtree:\n\
                height: {prev_end_height:?}\n\
                index: {prev_index}\n\
                position: {prev_position}\n\
                remaining: {prev_remaining_notes}\n\
                current subtree:\n\
                height: {end_height:?}"
            )
        });
        let current_index = tree
            .subtree_index()
            .expect("current block must have a subtree");
        let current_remaining_notes = tree.remaining_subtree_leaf_nodes();

        assert_eq!(
            prev_index.0 + 1,
            current_index.0,
            "subtree must have been completed by the current block:\n\
             previous subtree:\n\
             height: {prev_end_height:?}\n\
             index: {prev_index}\n\
             position: {prev_position}\n\
             remaining: {prev_remaining_notes}\n\
             current subtree:\n\
             height: {end_height:?}\n\
             index: {current_index}\n\
             position: {current_position}\n\
             remaining: {current_remaining_notes}"
        );

        // Get the missing notes needed to complete the subtree.
        //
        // TODO: consider just reading the block's transactions from the database file,
        //       because we don't use the block header data at all.
        let block = read_db
            .block(end_height.into())
            .expect("height with note commitment tree should have block");
        let orchard_note_commitments = block
            .orchard_note_commitments()
            .take(prev_remaining_notes)
            .cloned()
            .collect();

        // This takes less than 1 second per tree, so we don't need to make it cancellable.
        let (orchard_nct, subtree) = NoteCommitmentTrees::update_orchard_note_commitment_tree(
            prev_tree,
            orchard_note_commitments,
        )
        .expect("finalized notes should append successfully");

        let (index, node) = subtree.unwrap_or_else(|| {
            panic!(
                "already checked that the block completed a subtree:\n\
                 updated subtree:\n\
                 index: {:?}\n\
                 position: {:?}\n\
                 remaining notes: {}\n\
                 original previous subtree:\n\
                 height: {prev_end_height:?}\n\
                 index: {prev_index}\n\
                 position: {prev_position}\n\
                 remaining: {prev_remaining_notes}\n\
                 original current subtree:\n\
                 height: {end_height:?}\n\
                 index: {current_index}\n\
                 position: {current_position}\n\
                 remaining: {current_remaining_notes}",
                orchard_nct.subtree_index(),
                orchard_nct.position(),
                orchard_nct.remaining_subtree_leaf_nodes(),
            )
        });

        NoteCommitmentSubtree::new(index, end_height, node)
    }
}

/// Writes a Sapling note commitment subtree to `upgrade_db`.
fn write_sapling_subtree(
    upgrade_db: &ZebraDb,
    subtree: NoteCommitmentSubtree<sapling::tree::Node>,
) {
    let mut batch = DiskWriteBatch::new();

    batch.insert_sapling_subtree(upgrade_db, &subtree);

    upgrade_db
        .write_batch(batch)
        .expect("writing sapling note commitment subtrees should always succeed.");

    if subtree.index.0 % 100 == 0 {
        info!(end_height = ?subtree.end_height, index = ?subtree.index.0, "calculated and added sapling subtree");
    }
    // This log happens about once per second on recent machines with SSD disks.
    debug!(end_height = ?subtree.end_height, index = ?subtree.index.0, "calculated and added sapling subtree");
}

/// Writes an Orchard note commitment subtree to `upgrade_db`.
fn write_orchard_subtree(
    upgrade_db: &ZebraDb,
    subtree: NoteCommitmentSubtree<orchard::tree::Node>,
) {
    let mut batch = DiskWriteBatch::new();

    batch.insert_orchard_subtree(upgrade_db, &subtree);

    upgrade_db
        .write_batch(batch)
        .expect("writing orchard note commitment subtrees should always succeed.");

    if subtree.index.0 % 100 == 0 {
        info!(end_height = ?subtree.end_height, index = ?subtree.index.0, "calculated and added orchard subtree");
    }
    // This log happens about once per second on recent machines with SSD disks.
    debug!(end_height = ?subtree.end_height, index = ?subtree.index.0, "calculated and added orchard subtree");
}