1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
//! Converting bytes into Zcash consensus-critical data structures.
use std::{io, net::Ipv6Addr, sync::Arc};
use super::{AtLeastOne, CompactSizeMessage, SerializationError, MAX_PROTOCOL_MESSAGE_LEN};
/// Consensus-critical deserialization for Zcash.
///
/// This trait provides a generic deserialization for consensus-critical
/// formats, such as network messages, transactions, blocks, etc.
///
/// It is intended for use only for consensus-critical formats.
/// Internal deserialization can freely use `serde`, or any other format.
pub trait ZcashDeserialize: Sized {
/// Try to read `self` from the given `reader`.
///
/// This function has a `zcash_` prefix to alert the reader that the
/// serialization in use is consensus-critical serialization, rather than
/// some other kind of serialization.
fn zcash_deserialize<R: io::Read>(reader: R) -> Result<Self, SerializationError>;
}
/// Deserialize a `Vec`, where the number of items is set by a CompactSize
/// prefix in the data. This is the most common format in Zcash.
///
/// See `zcash_deserialize_external_count` for more details, and usage
/// information.
impl<T: ZcashDeserialize + TrustedPreallocate> ZcashDeserialize for Vec<T> {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let len: CompactSizeMessage = (&mut reader).zcash_deserialize_into()?;
zcash_deserialize_external_count(len.into(), reader)
}
}
/// Deserialize an `AtLeastOne` vector, where the number of items is set by a
/// CompactSize prefix in the data. This is the most common format in Zcash.
impl<T: ZcashDeserialize + TrustedPreallocate> ZcashDeserialize for AtLeastOne<T> {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let v: Vec<T> = (&mut reader).zcash_deserialize_into()?;
v.try_into()
}
}
/// Implement ZcashDeserialize for `Vec<u8>` directly instead of using the blanket Vec implementation
///
/// This allows us to optimize the inner loop into a single call to `read_exact()`
/// Note that we don't implement TrustedPreallocate for u8.
/// This allows the optimization without relying on specialization.
impl ZcashDeserialize for Vec<u8> {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let len: CompactSizeMessage = (&mut reader).zcash_deserialize_into()?;
zcash_deserialize_bytes_external_count(len.into(), reader)
}
}
/// Deserialize a `Vec` containing `external_count` items.
///
/// In Zcash, most arrays are stored as a CompactSize, followed by that number
/// of items of type `T`. But in `Transaction::V5`, some types are serialized as
/// multiple arrays in different locations, with a single CompactSize before the
/// first array.
///
/// ## Usage
///
/// Use `zcash_deserialize_external_count` when the array count is determined by
/// other data, or a consensus rule.
///
/// Use `Vec::zcash_deserialize` for data that contains CompactSize count,
/// followed by the data array.
///
/// For example, when a single count applies to multiple arrays:
/// 1. Use `Vec::zcash_deserialize` for the array that has a data count.
/// 2. Use `zcash_deserialize_external_count` for the arrays with no count in the
/// data, passing the length of the first array.
///
/// This function has a `zcash_` prefix to alert the reader that the
/// serialization in use is consensus-critical serialization, rather than
/// some other kind of serialization.
pub fn zcash_deserialize_external_count<R: io::Read, T: ZcashDeserialize + TrustedPreallocate>(
external_count: usize,
mut reader: R,
) -> Result<Vec<T>, SerializationError> {
match u64::try_from(external_count) {
Ok(external_count) if external_count > T::max_allocation() => {
return Err(SerializationError::Parse(
"Vector longer than max_allocation",
))
}
Ok(_) => {}
// As of 2021, usize is less than or equal to 64 bits on all (or almost all?) supported Rust platforms.
// So in practice this error is impossible. (But the check is required, because Rust is future-proof
// for 128 bit memory spaces.)
Err(_) => return Err(SerializationError::Parse("Vector longer than u64::MAX")),
}
let mut vec = Vec::with_capacity(external_count);
for _ in 0..external_count {
vec.push(T::zcash_deserialize(&mut reader)?);
}
Ok(vec)
}
/// `zcash_deserialize_external_count`, specialised for raw bytes.
///
/// This allows us to optimize the inner loop into a single call to `read_exact()`.
///
/// This function has a `zcash_` prefix to alert the reader that the
/// serialization in use is consensus-critical serialization, rather than
/// some other kind of serialization.
pub fn zcash_deserialize_bytes_external_count<R: io::Read>(
external_count: usize,
mut reader: R,
) -> Result<Vec<u8>, SerializationError> {
if external_count > MAX_U8_ALLOCATION {
return Err(SerializationError::Parse(
"Byte vector longer than MAX_U8_ALLOCATION",
));
}
let mut vec = vec![0u8; external_count];
reader.read_exact(&mut vec)?;
Ok(vec)
}
/// `zcash_deserialize_external_count`, specialised for [`String`].
/// The external count is in bytes. (Not UTF-8 characters.)
///
/// This allows us to optimize the inner loop into a single call to `read_exact()`.
///
/// This function has a `zcash_` prefix to alert the reader that the
/// serialization in use is consensus-critical serialization, rather than
/// some other kind of serialization.
pub fn zcash_deserialize_string_external_count<R: io::Read>(
external_byte_count: usize,
reader: R,
) -> Result<String, SerializationError> {
let bytes = zcash_deserialize_bytes_external_count(external_byte_count, reader)?;
String::from_utf8(bytes).map_err(|_| SerializationError::Parse("invalid utf-8"))
}
/// Read a Bitcoin-encoded UTF-8 string.
impl ZcashDeserialize for String {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let byte_count: CompactSizeMessage = (&mut reader).zcash_deserialize_into()?;
zcash_deserialize_string_external_count(byte_count.into(), reader)
}
}
// We don't impl ZcashDeserialize for Ipv4Addr or SocketAddrs,
// because the IPv4 and port formats are different in addr (v1) and addrv2 messages.
/// Read a Bitcoin-encoded IPv6 address.
impl ZcashDeserialize for Ipv6Addr {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let mut ipv6_addr = [0u8; 16];
reader.read_exact(&mut ipv6_addr)?;
Ok(Ipv6Addr::from(ipv6_addr))
}
}
/// Helper for deserializing more succinctly via type inference
pub trait ZcashDeserializeInto {
/// Deserialize based on type inference
fn zcash_deserialize_into<T>(self) -> Result<T, SerializationError>
where
T: ZcashDeserialize;
}
impl<R: io::Read> ZcashDeserializeInto for R {
fn zcash_deserialize_into<T>(self) -> Result<T, SerializationError>
where
T: ZcashDeserialize,
{
T::zcash_deserialize(self)
}
}
/// Blind preallocation of a `Vec<T: TrustedPreallocate>` is based on a bounded length. This is in contrast
/// to blind preallocation of a generic `Vec<T>`, which is a DOS vector.
///
/// The max_allocation() function provides a loose upper bound on the size of the `Vec<T: TrustedPreallocate>`
/// which can possibly be received from an honest peer. If this limit is too low, Zebra may reject valid messages.
/// In the worst case, setting the lower bound too low could cause Zebra to fall out of consensus by rejecting all messages containing a valid block.
pub trait TrustedPreallocate {
/// Provides a ***loose upper bound*** on the size of the `Vec<T: TrustedPreallocate>`
/// which can possibly be received from an honest peer.
fn max_allocation() -> u64;
}
impl<T> TrustedPreallocate for Arc<T>
where
T: TrustedPreallocate,
{
fn max_allocation() -> u64 {
T::max_allocation()
}
}
/// The length of the longest valid `Vec<u8>` that can be received over the network
///
/// It takes 5 bytes to encode a CompactSize representing any number netween 2^16 and (2^32 - 1)
/// MAX_PROTOCOL_MESSAGE_LEN is ~2^21, so the largest `Vec<u8>` that can be received from an honest peer is
/// (MAX_PROTOCOL_MESSAGE_LEN - 5);
pub(crate) const MAX_U8_ALLOCATION: usize = MAX_PROTOCOL_MESSAGE_LEN - 5;