zebra_chain/orchard/sinsemilla.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
//! Sinsemilla hash functions and helpers.
use bitvec::prelude::*;
use halo2::{
arithmetic::{Coordinates, CurveAffine, CurveExt},
pasta::{group::Group, pallas},
};
/// [Coordinate Extractor for Pallas][concreteextractorpallas]
///
/// ExtractP: P → P𝑥 such that ExtractP(𝑃) = 𝑥(𝑃) mod 𝑞P.
///
/// ExtractP returns the type P𝑥 which is precise for its range, unlike
/// ExtractJ(𝑟) which returns a bit sequence.
///
/// [concreteextractorpallas]: https://zips.z.cash/protocol/nu5.pdf#concreteextractorpallas
pub fn extract_p(point: pallas::Point) -> pallas::Base {
let option: Option<Coordinates<pallas::Affine>> =
pallas::Affine::from(point).coordinates().into();
match option {
// If Some, it's not the identity.
Some(coordinates) => *coordinates.x(),
_ => pallas::Base::zero(),
}
}
/// Extract⊥ P: P ∪ {⊥} → P𝑥 ∪ {⊥} such that
///
/// Extract⊥ P(︀⊥)︀ = ⊥
/// Extract⊥ P(︀𝑃: P)︀ = ExtractP(𝑃).
///
/// <https://zips.z.cash/protocol/nu5.pdf#concreteextractorpallas>
pub fn extract_p_bottom(maybe_point: Option<pallas::Point>) -> Option<pallas::Base> {
// Maps an Option<T> to Option<U> by applying a function to a contained value.
maybe_point.map(extract_p)
}
/// GroupHash into Pallas, aka _GroupHash^P_
///
/// Produces a random point in the Pallas curve. The first input element acts
/// as a domain separator to distinguish uses of the group hash for different
/// purposes; the second input element is the message.
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretegrouphashpallasandvesta>
#[allow(non_snake_case)]
pub fn pallas_group_hash(D: &[u8], M: &[u8]) -> pallas::Point {
let domain_separator = std::str::from_utf8(D).unwrap();
pallas::Point::hash_to_curve(domain_separator)(M)
}
/// Q(D) := GroupHash^P(︀“z.cash:SinsemillaQ”, D)
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
#[allow(non_snake_case)]
fn Q(D: &[u8]) -> pallas::Point {
pallas_group_hash(b"z.cash:SinsemillaQ", D)
}
/// S(j) := GroupHash^P(︀“z.cash:SinsemillaS”, LEBS2OSP32(I2LEBSP32(j)))
///
/// S: {0 .. 2^k - 1} -> P^*, aka 10 bits hashed into the group
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
#[allow(non_snake_case)]
fn S(j: &BitSlice<u8, Lsb0>) -> pallas::Point {
// The value of j is a 10-bit value, therefore must never exceed 2^10 in
// value.
assert_eq!(j.len(), 10);
// I2LEOSP_32(𝑗)
let mut leosp_32_j = [0u8; 4];
leosp_32_j[..2].copy_from_slice(j.to_bitvec().as_raw_slice());
pallas_group_hash(b"z.cash:SinsemillaS", &leosp_32_j)
}
/// Incomplete addition on the Pallas curve.
///
/// P ∪ {⊥} × P ∪ {⊥} → P ∪ {⊥}
///
/// <https://zips.z.cash/protocol/protocol.pdf#concretesinsemillahash>
fn incomplete_addition(
left: Option<pallas::Point>,
right: Option<pallas::Point>,
) -> Option<pallas::Point> {
let identity = pallas::Point::identity();
match (left, right) {
(None, _) | (_, None) => None,
(Some(l), _) if l == identity => None,
(_, Some(r)) if r == identity => None,
(Some(l), Some(r)) if l == r => None,
// The inverse of l, (x, -y)
(Some(l), Some(r)) if l == -r => None,
(Some(l), Some(r)) => Some(l + r),
}
}
/// "...an algebraic hash function with collision resistance (for fixed input
/// length) derived from assumed hardness of the Discrete Logarithm Problem on
/// the Pallas curve."
///
/// SinsemillaHash is used in the definitions of Sinsemilla commitments and of
/// the Sinsemilla hash for the Orchard incremental Merkle tree (§ 5.4.1.3
/// ‘MerkleCRH^Orchard Hash Function’).
///
/// SinsemillaHashToPoint(𝐷: B^Y^\[N\] , 𝑀 : B ^[{0 .. 𝑘·𝑐}] ) → P ∪ {⊥}
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
///
/// # Panics
///
/// If `M` is greater than `k*c = 2530` bits.
#[allow(non_snake_case)]
pub fn sinsemilla_hash_to_point(D: &[u8], M: &BitVec<u8, Lsb0>) -> Option<pallas::Point> {
let k = 10;
let c = 253;
assert!(M.len() <= k * c);
let mut acc = Some(Q(D));
// Split M into n segments of k bits, where k = 10 and c = 253, padding
// the last segment with zeros.
//
// https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash
for chunk in M.chunks(k) {
// Pad each chunk with zeros.
let mut store = [0u8; 2];
let bits = BitSlice::<_, Lsb0>::from_slice_mut(&mut store);
bits[..chunk.len()].copy_from_bitslice(chunk);
acc = incomplete_addition(incomplete_addition(acc, Some(S(&bits[..k]))), acc);
}
acc
}
/// Sinsemilla Hash Function
///
/// "SinsemillaHash is an algebraic hash function with collision resistance (for
/// fixed input length) derived from assumed hardness of the Discrete Logarithm
/// Problem. It is designed by Sean Bowe and Daira Hopwood. The motivation for
/// introducing a new discrete-log-based hash function (rather than using
/// PedersenHash) is to make efcient use of the lookups available in recent
/// proof systems including Halo 2."
///
/// SinsemillaHash: B^Y^\[N\] × B[{0 .. 𝑘·𝑐}] → P_𝑥 ∪ {⊥}
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
///
/// # Panics
///
/// If `M` is greater than `k*c = 2530` bits in `sinsemilla_hash_to_point`.
#[allow(non_snake_case)]
pub fn sinsemilla_hash(D: &[u8], M: &BitVec<u8, Lsb0>) -> Option<pallas::Base> {
extract_p_bottom(sinsemilla_hash_to_point(D, M))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::orchard::tests::vectors;
#[cfg(test)]
fn x_from_str(s: &str) -> pallas::Base {
use halo2::pasta::group::ff::PrimeField;
pallas::Base::from_str_vartime(s).unwrap()
}
#[test]
#[allow(non_snake_case)]
fn sinsemilla_single_test_vector() {
use halo2::pasta::group::Curve;
let D = b"z.cash:test-Sinsemilla";
let M = bitvec![
u8, Lsb0; 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,
];
let test_vector = pallas::Affine::from_xy(
x_from_str(
"19681977528872088480295086998934490146368213853811658798708435106473481753752",
),
x_from_str(
"14670850419772526047574141291705097968771694788047376346841674072293161339903",
),
)
.unwrap();
assert_eq!(
sinsemilla_hash_to_point(&D[..], &M).expect("").to_affine(),
test_vector
)
}
// Checks Sinsemilla hashes to point and to bytes (aka the x-coordinate
// bytes of a point) with:
// - One of two domains.
// - Random message lengths between 0 and 255 bytes.
// - Random message bits.
#[test]
#[allow(non_snake_case)]
fn sinsemilla_hackworks_test_vectors() {
use halo2::pasta::group::{ff::PrimeField, GroupEncoding};
for tv in tests::vectors::SINSEMILLA.iter() {
let D = tv.domain.as_slice();
let M: &BitVec<u8, Lsb0> = &tv.msg.iter().collect();
assert_eq!(
sinsemilla_hash_to_point(D, M).expect("should not fail per Theorem 5.4.4"),
pallas::Point::from_bytes(&tv.point).unwrap()
);
assert_eq!(
sinsemilla_hash(D, M).expect("should not fail per Theorem 5.4.4"),
pallas::Base::from_repr(tv.hash).unwrap()
)
}
}
// Checks Pallas group hashes with:
// - One of two domains.
// - Random message lengths between 0 and 255 bytes.
// - Random message contents.
#[test]
#[allow(non_snake_case)]
fn sinsemilla_hackworks_group_hash_test_vectors() {
use halo2::pasta::group::GroupEncoding;
for tv in tests::vectors::GROUP_HASHES.iter() {
let D = tv.domain.as_slice();
let M = tv.msg.as_slice();
assert_eq!(
pallas_group_hash(D, M),
pallas::Point::from_bytes(&tv.point).unwrap()
);
}
}
}