1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
//! Pedersen hash functions and helpers.
use bitvec::prelude::*;
use super::super::keys::find_group_hash;
/// I_i
///
/// Expects i to be 1-indexed from the loop it's called in.
///
/// <https://zips.z.cash/protocol/protocol.pdf#concretepedersenhash>
#[allow(non_snake_case)]
fn I_i(domain: [u8; 8], i: u32) -> jubjub::ExtendedPoint {
find_group_hash(domain, &(i - 1).to_le_bytes())
}
/// The encoding function ⟨Mᵢ⟩
///
/// Σ j={0,k-1}: (1 - 2x₂)⋅(1 + x₀ + 2x₁)⋅2^(4⋅j)
///
/// <https://zips.z.cash/protocol/protocol.pdf#concretepedersenhash>
#[allow(non_snake_case)]
fn M_i(segment: &BitSlice<u8, Lsb0>) -> jubjub::Fr {
let mut m_i = jubjub::Fr::zero();
for (j, chunk) in segment.chunks(3).enumerate() {
// Pad each chunk with zeros.
let mut store = 0u8;
let bits = BitSlice::<_, Lsb0>::from_element_mut(&mut store);
chunk
.iter()
.enumerate()
.for_each(|(i, bit)| bits.set(i, *bit));
let mut tmp = jubjub::Fr::one();
if bits[0] {
tmp += &jubjub::Fr::one();
}
if bits[1] {
tmp += &jubjub::Fr::one().double();
}
if bits[2] {
tmp -= tmp.double();
}
if j > 0 {
// Inclusive range!
tmp *= (1..=(4 * j)).fold(jubjub::Fr::one(), |acc, _| acc.double());
}
m_i += tmp;
}
m_i
}
/// "...an algebraic hash function with collision resistance (for fixed input
/// length) derived from assumed hardness of the Discrete Logarithm Problem on
/// the Jubjub curve."
///
/// PedersenHash is used in the definitions of Pedersen commitments (§
/// 5.4.7.2 'Windowed Pedersen commitments'), and of the Pedersen hash for the
/// Sapling incremental Merkle tree (§ 5.4.1.3 'MerkleCRH^Sapling Hash
/// Function').
///
/// <https://zips.z.cash/protocol/protocol.pdf#concretepedersenhash>
#[allow(non_snake_case)]
pub fn pedersen_hash_to_point(domain: [u8; 8], M: &BitVec<u8, Lsb0>) -> jubjub::ExtendedPoint {
let mut result = jubjub::ExtendedPoint::identity();
// Split M into n segments of 3 * c bits, where c = 63, padding the last
// segment with zeros.
//
// This loop is 1-indexed per the math definitions in the spec.
//
// https://zips.z.cash/protocol/protocol.pdf#concretepedersenhash
for (i, segment) in M
.chunks(189)
.enumerate()
.map(|(i, segment)| (i + 1, segment))
{
result += I_i(domain, i as u32) * M_i(segment);
}
result
}
/// Pedersen Hash Function
///
/// This is technically returning 255 (l_MerkleSapling) bits, not 256.
///
/// <https://zips.z.cash/protocol/protocol.pdf#concretepedersenhash>
#[allow(non_snake_case)]
pub fn pedersen_hash(domain: [u8; 8], M: &BitVec<u8, Lsb0>) -> jubjub::Fq {
jubjub::AffinePoint::from(pedersen_hash_to_point(domain, M)).get_u()
}
/// Construct a 'windowed' Pedersen commitment by reusing a Pederson hash
/// construction, and adding a randomized point on the Jubjub curve.
///
/// WindowedPedersenCommit_r (s) := \
/// PedersenHashToPoint("Zcash_PH", s) + \[r\]FindGroupHash^J^(r)("Zcash_PH", "r")
///
/// <https://zips.z.cash/protocol/protocol.pdf#concretewindowedcommit>
pub fn windowed_pedersen_commitment(r: jubjub::Fr, s: &BitVec<u8, Lsb0>) -> jubjub::ExtendedPoint {
const D: [u8; 8] = *b"Zcash_PH";
pedersen_hash_to_point(D, s) + find_group_hash(D, b"r") * r
}