1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
//! Reading note commitment trees.
//!
//! In the functions in this module:
//!
//! The block write task commits blocks to the finalized state before updating
//! `chain` with a cached copy of the best non-finalized chain from
//! `NonFinalizedState.chain_set`. Then the block commit task can commit additional blocks to
//! the finalized state after we've cloned the `chain`.
//!
//! This means that some blocks can be in both:
//! - the cached [`Chain`], and
//! - the shared finalized [`ZebraDb`] reference.
use std::{collections::BTreeMap, sync::Arc};
use zebra_chain::{
orchard, sapling,
subtree::{NoteCommitmentSubtreeData, NoteCommitmentSubtreeIndex},
};
use crate::{
service::{finalized_state::ZebraDb, non_finalized_state::Chain},
HashOrHeight,
};
// Doc-only items
#[allow(unused_imports)]
use zebra_chain::subtree::NoteCommitmentSubtree;
/// Returns the Sapling
/// [`NoteCommitmentTree`](sapling::tree::NoteCommitmentTree) specified by a
/// hash or height, if it exists in the non-finalized `chain` or finalized `db`.
pub fn sapling_tree<C>(
chain: Option<C>,
db: &ZebraDb,
hash_or_height: HashOrHeight,
) -> Option<Arc<sapling::tree::NoteCommitmentTree>>
where
C: AsRef<Chain>,
{
// # Correctness
//
// Since sapling treestates are the same in the finalized and non-finalized
// state, we check the most efficient alternative first. (`chain` is always
// in memory, but `db` stores blocks on disk, with a memory cache.)
chain
.and_then(|chain| chain.as_ref().sapling_tree(hash_or_height))
.or_else(|| db.sapling_tree_by_hash_or_height(hash_or_height))
}
/// Returns a list of Sapling [`NoteCommitmentSubtree`]s with indexes in the provided range.
///
/// If there is no subtree at the first index in the range, the returned list is empty.
/// Otherwise, subtrees are continuous up to the finalized tip.
///
/// See [`subtrees`] for more details.
pub fn sapling_subtrees<C>(
chain: Option<C>,
db: &ZebraDb,
range: impl std::ops::RangeBounds<NoteCommitmentSubtreeIndex> + Clone,
) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<sapling::tree::Node>>
where
C: AsRef<Chain>,
{
subtrees(
chain,
range,
|chain, range| chain.sapling_subtrees_in_range(range),
|range| db.sapling_subtree_list_by_index_range(range),
)
}
/// Returns the Orchard
/// [`NoteCommitmentTree`](orchard::tree::NoteCommitmentTree) specified by a
/// hash or height, if it exists in the non-finalized `chain` or finalized `db`.
pub fn orchard_tree<C>(
chain: Option<C>,
db: &ZebraDb,
hash_or_height: HashOrHeight,
) -> Option<Arc<orchard::tree::NoteCommitmentTree>>
where
C: AsRef<Chain>,
{
// # Correctness
//
// Since orchard treestates are the same in the finalized and non-finalized
// state, we check the most efficient alternative first. (`chain` is always
// in memory, but `db` stores blocks on disk, with a memory cache.)
chain
.and_then(|chain| chain.as_ref().orchard_tree(hash_or_height))
.or_else(|| db.orchard_tree_by_hash_or_height(hash_or_height))
}
/// Returns a list of Orchard [`NoteCommitmentSubtree`]s with indexes in the provided range.
///
/// If there is no subtree at the first index in the range, the returned list is empty.
/// Otherwise, subtrees are continuous up to the finalized tip.
///
/// See [`subtrees`] for more details.
pub fn orchard_subtrees<C>(
chain: Option<C>,
db: &ZebraDb,
range: impl std::ops::RangeBounds<NoteCommitmentSubtreeIndex> + Clone,
) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<orchard::tree::Node>>
where
C: AsRef<Chain>,
{
subtrees(
chain,
range,
|chain, range| chain.orchard_subtrees_in_range(range),
|range| db.orchard_subtree_list_by_index_range(range),
)
}
/// Returns a list of [`NoteCommitmentSubtree`]s in the provided range.
///
/// If there is no subtree at the first index in the range, the returned list is empty.
/// Otherwise, subtrees are continuous up to the finalized tip.
///
/// Accepts a `chain` from the non-finalized state, a `range` of subtree indexes to retrieve,
/// a `read_chain` function for retrieving the `range` of subtrees from `chain`, and
/// a `read_disk` function for retrieving the `range` from [`ZebraDb`].
///
/// Returns a consistent set of subtrees for the supplied chain fork and database.
/// Avoids reading the database if the subtrees are present in memory.
///
/// # Correctness
///
/// APIs that return single subtrees can't be used for `read_chain` and `read_disk`, because they
/// can create an inconsistent list of subtrees after concurrent non-finalized and finalized updates.
fn subtrees<C, Range, Node, ChainSubtreeFn, DbSubtreeFn>(
chain: Option<C>,
range: Range,
read_chain: ChainSubtreeFn,
read_disk: DbSubtreeFn,
) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<Node>>
where
C: AsRef<Chain>,
Node: PartialEq,
Range: std::ops::RangeBounds<NoteCommitmentSubtreeIndex> + Clone,
ChainSubtreeFn: FnOnce(
&Chain,
Range,
)
-> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<Node>>,
DbSubtreeFn:
FnOnce(Range) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<Node>>,
{
use std::ops::Bound::*;
let start_index = match range.start_bound().cloned() {
Included(start_index) => start_index,
Excluded(start_index) => (start_index.0 + 1).into(),
Unbounded => 0.into(),
};
// # Correctness
//
// After `chain` was cloned, the StateService can commit additional blocks to the finalized state `db`.
// Usually, the subtrees of these blocks are consistent. But if the `chain` is a different fork to `db`,
// then the trees can be inconsistent. In that case, if `chain` does not contain a subtree at the first
// index in the provided range, we ignore all the trees in `chain` after the first inconsistent tree,
// because we know they will be inconsistent as well. (It is cryptographically impossible for tree roots
// to be equal once the leaves have diverged.)
let results = match chain.map(|chain| read_chain(chain.as_ref(), range.clone())) {
Some(chain_results) if chain_results.contains_key(&start_index) => return chain_results,
Some(chain_results) => {
let mut db_results = read_disk(range);
// Check for inconsistent trees in the fork.
for (chain_index, chain_subtree) in chain_results {
// If there's no matching index, just update the list of trees.
let Some(db_subtree) = db_results.get(&chain_index) else {
db_results.insert(chain_index, chain_subtree);
continue;
};
// We have an outdated chain fork, so skip this subtree and all remaining subtrees.
if &chain_subtree != db_subtree {
break;
}
// Otherwise, the subtree is already in the list, so we don't need to add it.
}
db_results
}
None => read_disk(range),
};
// Check that we got the start subtree
if results.contains_key(&start_index) {
results
} else {
BTreeMap::new()
}
}
#[cfg(feature = "getblocktemplate-rpcs")]
/// Get the history tree of the provided chain.
pub fn history_tree<C>(
chain: Option<C>,
db: &ZebraDb,
hash_or_height: HashOrHeight,
) -> Option<Arc<zebra_chain::history_tree::HistoryTree>>
where
C: AsRef<Chain>,
{
chain
.and_then(|chain| chain.as_ref().history_tree(hash_or_height))
.or_else(|| Some(db.history_tree()))
}