1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//! Reading note commitment trees.
//!
//! In the functions in this module:
//!
//! The block write task commits blocks to the finalized state before updating
//! `chain` with a cached copy of the best non-finalized chain from
//! `NonFinalizedState.chain_set`. Then the block commit task can commit additional blocks to
//! the finalized state after we've cloned the `chain`.
//!
//! This means that some blocks can be in both:
//! - the cached [`Chain`], and
//! - the shared finalized [`ZebraDb`] reference.

use std::{collections::BTreeMap, sync::Arc};

use zebra_chain::{
    orchard, sapling,
    subtree::{NoteCommitmentSubtreeData, NoteCommitmentSubtreeIndex},
};

use crate::{
    service::{finalized_state::ZebraDb, non_finalized_state::Chain},
    HashOrHeight,
};

// Doc-only items
#[allow(unused_imports)]
use zebra_chain::subtree::NoteCommitmentSubtree;

/// Returns the Sapling
/// [`NoteCommitmentTree`](sapling::tree::NoteCommitmentTree) specified by a
/// hash or height, if it exists in the non-finalized `chain` or finalized `db`.
pub fn sapling_tree<C>(
    chain: Option<C>,
    db: &ZebraDb,
    hash_or_height: HashOrHeight,
) -> Option<Arc<sapling::tree::NoteCommitmentTree>>
where
    C: AsRef<Chain>,
{
    // # Correctness
    //
    // Since sapling treestates are the same in the finalized and non-finalized
    // state, we check the most efficient alternative first. (`chain` is always
    // in memory, but `db` stores blocks on disk, with a memory cache.)
    chain
        .and_then(|chain| chain.as_ref().sapling_tree(hash_or_height))
        .or_else(|| db.sapling_tree_by_hash_or_height(hash_or_height))
}

/// Returns a list of Sapling [`NoteCommitmentSubtree`]s with indexes in the provided range.
///
/// If there is no subtree at the first index in the range, the returned list is empty.
/// Otherwise, subtrees are continuous up to the finalized tip.
///
/// See [`subtrees`] for more details.
pub fn sapling_subtrees<C>(
    chain: Option<C>,
    db: &ZebraDb,
    range: impl std::ops::RangeBounds<NoteCommitmentSubtreeIndex> + Clone,
) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<sapling::tree::Node>>
where
    C: AsRef<Chain>,
{
    subtrees(
        chain,
        range,
        |chain, range| chain.sapling_subtrees_in_range(range),
        |range| db.sapling_subtree_list_by_index_range(range),
    )
}

/// Returns the Orchard
/// [`NoteCommitmentTree`](orchard::tree::NoteCommitmentTree) specified by a
/// hash or height, if it exists in the non-finalized `chain` or finalized `db`.
pub fn orchard_tree<C>(
    chain: Option<C>,
    db: &ZebraDb,
    hash_or_height: HashOrHeight,
) -> Option<Arc<orchard::tree::NoteCommitmentTree>>
where
    C: AsRef<Chain>,
{
    // # Correctness
    //
    // Since orchard treestates are the same in the finalized and non-finalized
    // state, we check the most efficient alternative first. (`chain` is always
    // in memory, but `db` stores blocks on disk, with a memory cache.)
    chain
        .and_then(|chain| chain.as_ref().orchard_tree(hash_or_height))
        .or_else(|| db.orchard_tree_by_hash_or_height(hash_or_height))
}

/// Returns a list of Orchard [`NoteCommitmentSubtree`]s with indexes in the provided range.
///
/// If there is no subtree at the first index in the range, the returned list is empty.
/// Otherwise, subtrees are continuous up to the finalized tip.
///
/// See [`subtrees`] for more details.
pub fn orchard_subtrees<C>(
    chain: Option<C>,
    db: &ZebraDb,
    range: impl std::ops::RangeBounds<NoteCommitmentSubtreeIndex> + Clone,
) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<orchard::tree::Node>>
where
    C: AsRef<Chain>,
{
    subtrees(
        chain,
        range,
        |chain, range| chain.orchard_subtrees_in_range(range),
        |range| db.orchard_subtree_list_by_index_range(range),
    )
}

/// Returns a list of [`NoteCommitmentSubtree`]s in the provided range.
///
/// If there is no subtree at the first index in the range, the returned list is empty.
/// Otherwise, subtrees are continuous up to the finalized tip.
///
/// Accepts a `chain` from the non-finalized state, a `range` of subtree indexes to retrieve,
/// a `read_chain` function for retrieving the `range` of subtrees from `chain`, and
/// a `read_disk` function for retrieving the `range` from [`ZebraDb`].
///
/// Returns a consistent set of subtrees for the supplied chain fork and database.
/// Avoids reading the database if the subtrees are present in memory.
///
/// # Correctness
///
/// APIs that return single subtrees can't be used for `read_chain` and `read_disk`, because they
/// can create an inconsistent list of subtrees after concurrent non-finalized and finalized updates.
fn subtrees<C, Range, Node, ChainSubtreeFn, DbSubtreeFn>(
    chain: Option<C>,
    range: Range,
    read_chain: ChainSubtreeFn,
    read_disk: DbSubtreeFn,
) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<Node>>
where
    C: AsRef<Chain>,
    Node: PartialEq,
    Range: std::ops::RangeBounds<NoteCommitmentSubtreeIndex> + Clone,
    ChainSubtreeFn: FnOnce(
        &Chain,
        Range,
    )
        -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<Node>>,
    DbSubtreeFn:
        FnOnce(Range) -> BTreeMap<NoteCommitmentSubtreeIndex, NoteCommitmentSubtreeData<Node>>,
{
    use std::ops::Bound::*;

    let start_index = match range.start_bound().cloned() {
        Included(start_index) => start_index,
        Excluded(start_index) => (start_index.0 + 1).into(),
        Unbounded => 0.into(),
    };

    // # Correctness
    //
    // After `chain` was cloned, the StateService can commit additional blocks to the finalized state `db`.
    // Usually, the subtrees of these blocks are consistent. But if the `chain` is a different fork to `db`,
    // then the trees can be inconsistent. In that case, if `chain` does not contain a subtree at the first
    // index in the provided range, we ignore all the trees in `chain` after the first inconsistent tree,
    // because we know they will be inconsistent as well. (It is cryptographically impossible for tree roots
    // to be equal once the leaves have diverged.)

    let results = match chain.map(|chain| read_chain(chain.as_ref(), range.clone())) {
        Some(chain_results) if chain_results.contains_key(&start_index) => return chain_results,
        Some(chain_results) => {
            let mut db_results = read_disk(range);

            // Check for inconsistent trees in the fork.
            for (chain_index, chain_subtree) in chain_results {
                // If there's no matching index, just update the list of trees.
                let Some(db_subtree) = db_results.get(&chain_index) else {
                    db_results.insert(chain_index, chain_subtree);
                    continue;
                };

                // We have an outdated chain fork, so skip this subtree and all remaining subtrees.
                if &chain_subtree != db_subtree {
                    break;
                }
                // Otherwise, the subtree is already in the list, so we don't need to add it.
            }

            db_results
        }
        None => read_disk(range),
    };

    // Check that we got the start subtree
    if results.contains_key(&start_index) {
        results
    } else {
        BTreeMap::new()
    }
}

#[cfg(feature = "getblocktemplate-rpcs")]
/// Get the history tree of the provided chain.
pub fn history_tree<C>(
    chain: Option<C>,
    db: &ZebraDb,
    hash_or_height: HashOrHeight,
) -> Option<Arc<zebra_chain::history_tree::HistoryTree>>
where
    C: AsRef<Chain>,
{
    chain
        .and_then(|chain| chain.as_ref().history_tree(hash_or_height))
        .or_else(|| Some(db.history_tree()))
}