1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
//! The Bitcoin-inherited Merkle tree of transactions.
use std::{fmt, io::Write, iter};
use hex::{FromHex, ToHex};
use crate::{
serialization::sha256d,
transaction::{self, Transaction, UnminedTx, UnminedTxId, VerifiedUnminedTx},
};
#[cfg(any(test, feature = "proptest-impl"))]
use proptest_derive::Arbitrary;
/// The root of the Bitcoin-inherited transaction Merkle tree, binding the
/// block header to the transactions in the block.
///
/// Note: for V5-onward transactions it does not bind to authorizing data
/// (signature and proofs) which makes it non-malleable [ZIP-244].
///
/// Note that because of a flaw in Bitcoin's design, the `merkle_root` does
/// not always precisely bind the contents of the block (CVE-2012-2459). It
/// is sometimes possible for an attacker to create multiple distinct sets of
/// transactions with the same Merkle root, although only one set will be
/// valid.
///
/// # Malleability
///
/// The Bitcoin source code contains the following note:
///
/// > WARNING! If you're reading this because you're learning about crypto
/// > and/or designing a new system that will use merkle trees, keep in mind
/// > that the following merkle tree algorithm has a serious flaw related to
/// > duplicate txids, resulting in a vulnerability (CVE-2012-2459).
/// > The reason is that if the number of hashes in the list at a given time
/// > is odd, the last one is duplicated before computing the next level (which
/// > is unusual in Merkle trees). This results in certain sequences of
/// > transactions leading to the same merkle root. For example, these two
/// > trees:
/// >
/// > ```ascii
/// > A A
/// > / \ / \
/// > B C B C
/// > / \ | / \ / \
/// > D E F D E F F
/// > / \ / \ / \ / \ / \ / \ / \
/// > 1 2 3 4 5 6 1 2 3 4 5 6 5 6
/// > ```
/// >
/// > for transaction lists \[1,2,3,4,5,6\] and \[1,2,3,4,5,6,5,6\] (where 5 and
/// > 6 are repeated) result in the same root hash A (because the hash of both
/// > of (F) and (F,F) is C).
/// >
/// > The vulnerability results from being able to send a block with such a
/// > transaction list, with the same merkle root, and the same block hash as
/// > the original without duplication, resulting in failed validation. If the
/// > receiving node proceeds to mark that block as permanently invalid
/// > however, it will fail to accept further unmodified (and thus potentially
/// > valid) versions of the same block. We defend against this by detecting
/// > the case where we would hash two identical hashes at the end of the list
/// > together, and treating that identically to the block having an invalid
/// > merkle root. Assuming no double-SHA256 collisions, this will detect all
/// > known ways of changing the transactions without affecting the merkle
/// > root.
///
/// This vulnerability does not apply to Zebra, because it does not store invalid
/// data on disk, and because it does not permanently fail blocks or use an
/// aggressive anti-DoS mechanism.
///
/// [ZIP-244]: https://zips.z.cash/zip-0244
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary, Default))]
pub struct Root(pub [u8; 32]);
impl fmt::Debug for Root {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Root").field(&hex::encode(self.0)).finish()
}
}
impl From<[u8; 32]> for Root {
fn from(hash: [u8; 32]) -> Self {
Root(hash)
}
}
impl From<Root> for [u8; 32] {
fn from(hash: Root) -> Self {
hash.0
}
}
impl Root {
/// Return the hash bytes in big-endian byte-order suitable for printing out byte by byte.
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn bytes_in_display_order(&self) -> [u8; 32] {
let mut reversed_bytes = self.0;
reversed_bytes.reverse();
reversed_bytes
}
/// Convert bytes in big-endian byte-order into a [`merkle::Root`](crate::block::merkle::Root).
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> Root {
let mut internal_byte_order = *bytes_in_display_order;
internal_byte_order.reverse();
Root(internal_byte_order)
}
}
impl ToHex for &Root {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex_upper()
}
}
impl ToHex for Root {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex_upper()
}
}
impl FromHex for Root {
type Error = <[u8; 32] as FromHex>::Error;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut hash = <[u8; 32]>::from_hex(hex)?;
hash.reverse();
Ok(hash.into())
}
}
fn hash(h1: &[u8; 32], h2: &[u8; 32]) -> [u8; 32] {
let mut w = sha256d::Writer::default();
w.write_all(h1).unwrap();
w.write_all(h2).unwrap();
w.finish()
}
fn auth_data_hash(h1: &[u8; 32], h2: &[u8; 32]) -> [u8; 32] {
// > Non-leaf hashes in this tree are BLAKE2b-256 hashes personalized by
// > the string "ZcashAuthDatHash".
// https://zips.z.cash/zip-0244#block-header-changes
blake2b_simd::Params::new()
.hash_length(32)
.personal(b"ZcashAuthDatHash")
.to_state()
.update(h1)
.update(h2)
.finalize()
.as_bytes()
.try_into()
.expect("32 byte array")
}
impl<T> std::iter::FromIterator<T> for Root
where
T: std::convert::AsRef<Transaction>,
{
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = T>,
{
transactions
.into_iter()
.map(|tx| tx.as_ref().hash())
.collect()
}
}
impl std::iter::FromIterator<UnminedTx> for Root {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = UnminedTx>,
{
transactions
.into_iter()
.map(|tx| tx.id.mined_id())
.collect()
}
}
impl std::iter::FromIterator<UnminedTxId> for Root {
fn from_iter<I>(tx_ids: I) -> Self
where
I: IntoIterator<Item = UnminedTxId>,
{
tx_ids.into_iter().map(|tx_id| tx_id.mined_id()).collect()
}
}
impl std::iter::FromIterator<VerifiedUnminedTx> for Root {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = VerifiedUnminedTx>,
{
transactions
.into_iter()
.map(|tx| tx.transaction.id.mined_id())
.collect()
}
}
impl std::iter::FromIterator<transaction::Hash> for Root {
/// # Panics
///
/// When there are no transactions in the iterator.
/// This is impossible, because every block must have a coinbase transaction.
fn from_iter<I>(hashes: I) -> Self
where
I: IntoIterator<Item = transaction::Hash>,
{
let mut hashes = hashes.into_iter().map(|hash| hash.0).collect::<Vec<_>>();
while hashes.len() > 1 {
hashes = hashes
.chunks(2)
.map(|chunk| match chunk {
[h1, h2] => hash(h1, h2),
[h1] => hash(h1, h1),
_ => unreachable!("chunks(2)"),
})
.collect();
}
Self(hashes[0])
}
}
/// The root of the authorizing data Merkle tree, binding the
/// block header to the authorizing data of the block (signatures, proofs)
/// as defined in [ZIP-244].
///
/// See [`Root`] for an important disclaimer.
///
/// [ZIP-244]: https://zips.z.cash/zip-0244
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary))]
pub struct AuthDataRoot(pub(crate) [u8; 32]);
impl fmt::Debug for AuthDataRoot {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("AuthRoot")
.field(&hex::encode(self.0))
.finish()
}
}
impl From<[u8; 32]> for AuthDataRoot {
fn from(hash: [u8; 32]) -> Self {
AuthDataRoot(hash)
}
}
impl From<AuthDataRoot> for [u8; 32] {
fn from(hash: AuthDataRoot) -> Self {
hash.0
}
}
impl AuthDataRoot {
/// Return the hash bytes in big-endian byte-order suitable for printing out byte by byte.
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn bytes_in_display_order(&self) -> [u8; 32] {
let mut reversed_bytes = self.0;
reversed_bytes.reverse();
reversed_bytes
}
/// Convert bytes in big-endian byte-order into a [`merkle::AuthDataRoot`](crate::block::merkle::AuthDataRoot).
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> AuthDataRoot {
let mut internal_byte_order = *bytes_in_display_order;
internal_byte_order.reverse();
AuthDataRoot(internal_byte_order)
}
}
impl ToHex for &AuthDataRoot {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex_upper()
}
}
impl ToHex for AuthDataRoot {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex_upper()
}
}
impl FromHex for AuthDataRoot {
type Error = <[u8; 32] as FromHex>::Error;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut hash = <[u8; 32]>::from_hex(hex)?;
hash.reverse();
Ok(hash.into())
}
}
/// The placeholder used for the [`AuthDigest`](transaction::AuthDigest) of pre-v5 transactions.
///
/// # Consensus
///
/// > For transaction versions before v5, a placeholder value consisting
/// > of 32 bytes of 0xFF is used in place of the authorizing data commitment.
/// > This is only used in the tree committed to by hashAuthDataRoot.
///
/// <https://zips.z.cash/zip-0244#authorizing-data-commitment>
pub const AUTH_DIGEST_PLACEHOLDER: transaction::AuthDigest = transaction::AuthDigest([0xFF; 32]);
impl<T> std::iter::FromIterator<T> for AuthDataRoot
where
T: std::convert::AsRef<Transaction>,
{
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = T>,
{
transactions
.into_iter()
.map(|tx| tx.as_ref().auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
.collect()
}
}
impl std::iter::FromIterator<UnminedTx> for AuthDataRoot {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = UnminedTx>,
{
transactions
.into_iter()
.map(|tx| tx.id.auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
.collect()
}
}
impl std::iter::FromIterator<VerifiedUnminedTx> for AuthDataRoot {
fn from_iter<I>(transactions: I) -> Self
where
I: IntoIterator<Item = VerifiedUnminedTx>,
{
transactions
.into_iter()
.map(|tx| {
tx.transaction
.id
.auth_digest()
.unwrap_or(AUTH_DIGEST_PLACEHOLDER)
})
.collect()
}
}
impl std::iter::FromIterator<UnminedTxId> for AuthDataRoot {
fn from_iter<I>(tx_ids: I) -> Self
where
I: IntoIterator<Item = UnminedTxId>,
{
tx_ids
.into_iter()
.map(|tx_id| tx_id.auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
.collect()
}
}
impl std::iter::FromIterator<transaction::AuthDigest> for AuthDataRoot {
fn from_iter<I>(hashes: I) -> Self
where
I: IntoIterator<Item = transaction::AuthDigest>,
{
let mut hashes = hashes.into_iter().map(|hash| hash.0).collect::<Vec<_>>();
// > This new commitment is named hashAuthDataRoot and is the root of a
// > binary Merkle tree of transaction authorizing data commitments [...]
// > padded with leaves having the "null" hash value [0u8; 32].
// https://zips.z.cash/zip-0244#block-header-changes
// Pad with enough leaves to make the tree full (a power of 2).
let pad_count = hashes.len().next_power_of_two() - hashes.len();
hashes.extend(iter::repeat([0u8; 32]).take(pad_count));
assert!(hashes.len().is_power_of_two());
while hashes.len() > 1 {
hashes = hashes
.chunks(2)
.map(|chunk| match chunk {
[h1, h2] => auth_data_hash(h1, h2),
_ => unreachable!("number of nodes is always even since tree is full"),
})
.collect();
}
Self(hashes[0])
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{block::Block, serialization::ZcashDeserialize, transaction::AuthDigest};
#[test]
fn block_test_vectors() {
for block_bytes in zebra_test::vectors::BLOCKS.iter() {
let block = Block::zcash_deserialize(&**block_bytes).unwrap();
let merkle_root = block.transactions.iter().collect::<Root>();
assert_eq!(
merkle_root,
block.header.merkle_root,
"block: {:?} {:?} transaction hashes: {:?}",
block.coinbase_height().unwrap(),
block.hash(),
block
.transactions
.iter()
.map(|tx| tx.hash())
.collect::<Vec<_>>()
);
}
}
#[test]
fn auth_digest() {
for block_bytes in zebra_test::vectors::BLOCKS.iter() {
let block = Block::zcash_deserialize(&**block_bytes).unwrap();
let _auth_root = block.transactions.iter().collect::<AuthDataRoot>();
// No test vectors for now, so just check it computes without panicking
}
}
#[test]
fn auth_data_padding() {
// Compute the root of a 3-leaf tree with arbitrary leaves
let mut v = vec![
AuthDigest([0x42; 32]),
AuthDigest([0xAA; 32]),
AuthDigest([0x77; 32]),
];
let root_3 = v.iter().copied().collect::<AuthDataRoot>();
// Compute the root a 4-leaf tree with the same leaves as before and
// an additional all-zeroes leaf.
// Since this is the same leaf used as padding in the previous tree,
// then both trees must have the same root.
v.push(AuthDigest([0x00; 32]));
let root_4 = v.iter().copied().collect::<AuthDataRoot>();
assert_eq!(root_3, root_4);
}
#[test]
fn auth_data_pre_v5() {
// Compute the AuthDataRoot for a single transaction of an arbitrary pre-V5 block
let block =
Block::zcash_deserialize(&**zebra_test::vectors::BLOCK_MAINNET_1046400_BYTES).unwrap();
let auth_root = block.transactions.iter().take(1).collect::<AuthDataRoot>();
// Compute the AuthDataRoot with a single [0xFF; 32] digest.
// Since ZIP-244 specifies that this value must be used as the auth digest of
// pre-V5 transactions, then the roots must match.
let expect_auth_root = [AuthDigest([0xFF; 32])]
.iter()
.copied()
.collect::<AuthDataRoot>();
assert_eq!(auth_root, expect_auth_root);
}
}