zebra_chain/block/
merkle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//! The Bitcoin-inherited Merkle tree of transactions.

use std::{fmt, io::Write, iter};

use hex::{FromHex, ToHex};

use crate::{
    serialization::sha256d,
    transaction::{self, Transaction, UnminedTx, UnminedTxId, VerifiedUnminedTx},
};

#[cfg(any(test, feature = "proptest-impl"))]
use proptest_derive::Arbitrary;

/// The root of the Bitcoin-inherited transaction Merkle tree, binding the
/// block header to the transactions in the block.
///
/// Note: for V5-onward transactions it does not bind to authorizing data
/// (signature and proofs) which makes it non-malleable [ZIP-244].
///
/// Note that because of a flaw in Bitcoin's design, the `merkle_root` does
/// not always precisely bind the contents of the block (CVE-2012-2459). It
/// is sometimes possible for an attacker to create multiple distinct sets of
/// transactions with the same Merkle root, although only one set will be
/// valid.
///
/// # Malleability
///
/// The Bitcoin source code contains the following note:
///
/// > WARNING! If you're reading this because you're learning about crypto
/// > and/or designing a new system that will use merkle trees, keep in mind
/// > that the following merkle tree algorithm has a serious flaw related to
/// > duplicate txids, resulting in a vulnerability (CVE-2012-2459).
/// > The reason is that if the number of hashes in the list at a given time
/// > is odd, the last one is duplicated before computing the next level (which
/// > is unusual in Merkle trees). This results in certain sequences of
/// > transactions leading to the same merkle root. For example, these two
/// > trees:
/// >
/// > ```ascii
/// >              A               A
/// >            /  \            /   \
/// >          B     C         B       C
/// >         / \    |        / \     / \
/// >        D   E   F       D   E   F   F
/// >       / \ / \ / \     / \ / \ / \ / \
/// >       1 2 3 4 5 6     1 2 3 4 5 6 5 6
/// > ```
/// >
/// > for transaction lists \[1,2,3,4,5,6\] and \[1,2,3,4,5,6,5,6\] (where 5 and
/// > 6 are repeated) result in the same root hash A (because the hash of both
/// > of (F) and (F,F) is C).
/// >
/// > The vulnerability results from being able to send a block with such a
/// > transaction list, with the same merkle root, and the same block hash as
/// > the original without duplication, resulting in failed validation. If the
/// > receiving node proceeds to mark that block as permanently invalid
/// > however, it will fail to accept further unmodified (and thus potentially
/// > valid) versions of the same block. We defend against this by detecting
/// > the case where we would hash two identical hashes at the end of the list
/// > together, and treating that identically to the block having an invalid
/// > merkle root. Assuming no double-SHA256 collisions, this will detect all
/// > known ways of changing the transactions without affecting the merkle
/// > root.
///
/// This vulnerability does not apply to Zebra, because it does not store invalid
/// data on disk, and because it does not permanently fail blocks or use an
/// aggressive anti-DoS mechanism.
///
/// [ZIP-244]: https://zips.z.cash/zip-0244
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary, Default))]
pub struct Root(pub [u8; 32]);

impl fmt::Debug for Root {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("Root").field(&hex::encode(self.0)).finish()
    }
}

impl From<[u8; 32]> for Root {
    fn from(hash: [u8; 32]) -> Self {
        Root(hash)
    }
}

impl From<Root> for [u8; 32] {
    fn from(hash: Root) -> Self {
        hash.0
    }
}

impl Root {
    /// Return the hash bytes in big-endian byte-order suitable for printing out byte by byte.
    ///
    /// Zebra displays transaction and block hashes in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    pub fn bytes_in_display_order(&self) -> [u8; 32] {
        let mut reversed_bytes = self.0;
        reversed_bytes.reverse();
        reversed_bytes
    }

    /// Convert bytes in big-endian byte-order into a [`merkle::Root`](crate::block::merkle::Root).
    ///
    /// Zebra displays transaction and block hashes in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> Root {
        let mut internal_byte_order = *bytes_in_display_order;
        internal_byte_order.reverse();

        Root(internal_byte_order)
    }
}

impl ToHex for &Root {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex_upper()
    }
}

impl ToHex for Root {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex_upper()
    }
}

impl FromHex for Root {
    type Error = <[u8; 32] as FromHex>::Error;

    fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
        let mut hash = <[u8; 32]>::from_hex(hex)?;
        hash.reverse();

        Ok(hash.into())
    }
}

fn hash(h1: &[u8; 32], h2: &[u8; 32]) -> [u8; 32] {
    let mut w = sha256d::Writer::default();
    w.write_all(h1).unwrap();
    w.write_all(h2).unwrap();
    w.finish()
}

fn auth_data_hash(h1: &[u8; 32], h2: &[u8; 32]) -> [u8; 32] {
    // > Non-leaf hashes in this tree are BLAKE2b-256 hashes personalized by
    // > the string "ZcashAuthDatHash".
    // https://zips.z.cash/zip-0244#block-header-changes
    blake2b_simd::Params::new()
        .hash_length(32)
        .personal(b"ZcashAuthDatHash")
        .to_state()
        .update(h1)
        .update(h2)
        .finalize()
        .as_bytes()
        .try_into()
        .expect("32 byte array")
}

impl<T> std::iter::FromIterator<T> for Root
where
    T: std::convert::AsRef<Transaction>,
{
    fn from_iter<I>(transactions: I) -> Self
    where
        I: IntoIterator<Item = T>,
    {
        transactions
            .into_iter()
            .map(|tx| tx.as_ref().hash())
            .collect()
    }
}

impl std::iter::FromIterator<UnminedTx> for Root {
    fn from_iter<I>(transactions: I) -> Self
    where
        I: IntoIterator<Item = UnminedTx>,
    {
        transactions
            .into_iter()
            .map(|tx| tx.id.mined_id())
            .collect()
    }
}

impl std::iter::FromIterator<UnminedTxId> for Root {
    fn from_iter<I>(tx_ids: I) -> Self
    where
        I: IntoIterator<Item = UnminedTxId>,
    {
        tx_ids.into_iter().map(|tx_id| tx_id.mined_id()).collect()
    }
}

impl std::iter::FromIterator<VerifiedUnminedTx> for Root {
    fn from_iter<I>(transactions: I) -> Self
    where
        I: IntoIterator<Item = VerifiedUnminedTx>,
    {
        transactions
            .into_iter()
            .map(|tx| tx.transaction.id.mined_id())
            .collect()
    }
}

impl std::iter::FromIterator<transaction::Hash> for Root {
    /// # Panics
    ///
    /// When there are no transactions in the iterator.
    /// This is impossible, because every block must have a coinbase transaction.
    fn from_iter<I>(hashes: I) -> Self
    where
        I: IntoIterator<Item = transaction::Hash>,
    {
        let mut hashes = hashes.into_iter().map(|hash| hash.0).collect::<Vec<_>>();
        while hashes.len() > 1 {
            hashes = hashes
                .chunks(2)
                .map(|chunk| match chunk {
                    [h1, h2] => hash(h1, h2),
                    [h1] => hash(h1, h1),
                    _ => unreachable!("chunks(2)"),
                })
                .collect();
        }
        Self(hashes[0])
    }
}

/// The root of the authorizing data Merkle tree, binding the
/// block header to the authorizing data of the block (signatures, proofs)
/// as defined in [ZIP-244].
///
/// See [`Root`] for an important disclaimer.
///
/// [ZIP-244]: https://zips.z.cash/zip-0244
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary))]
pub struct AuthDataRoot(pub(crate) [u8; 32]);

impl fmt::Debug for AuthDataRoot {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("AuthRoot")
            .field(&hex::encode(self.0))
            .finish()
    }
}

impl From<[u8; 32]> for AuthDataRoot {
    fn from(hash: [u8; 32]) -> Self {
        AuthDataRoot(hash)
    }
}

impl From<AuthDataRoot> for [u8; 32] {
    fn from(hash: AuthDataRoot) -> Self {
        hash.0
    }
}

impl AuthDataRoot {
    /// Return the hash bytes in big-endian byte-order suitable for printing out byte by byte.
    ///
    /// Zebra displays transaction and block hashes in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    pub fn bytes_in_display_order(&self) -> [u8; 32] {
        let mut reversed_bytes = self.0;
        reversed_bytes.reverse();
        reversed_bytes
    }

    /// Convert bytes in big-endian byte-order into a [`merkle::AuthDataRoot`](crate::block::merkle::AuthDataRoot).
    ///
    /// Zebra displays transaction and block hashes in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> AuthDataRoot {
        let mut internal_byte_order = *bytes_in_display_order;
        internal_byte_order.reverse();

        AuthDataRoot(internal_byte_order)
    }
}

impl ToHex for &AuthDataRoot {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex_upper()
    }
}

impl ToHex for AuthDataRoot {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex_upper()
    }
}

impl FromHex for AuthDataRoot {
    type Error = <[u8; 32] as FromHex>::Error;

    fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
        let mut hash = <[u8; 32]>::from_hex(hex)?;
        hash.reverse();

        Ok(hash.into())
    }
}

/// The placeholder used for the [`AuthDigest`](transaction::AuthDigest) of pre-v5 transactions.
///
/// # Consensus
///
/// > For transaction versions before v5, a placeholder value consisting
/// > of 32 bytes of 0xFF is used in place of the authorizing data commitment.
/// > This is only used in the tree committed to by hashAuthDataRoot.
///
/// <https://zips.z.cash/zip-0244#authorizing-data-commitment>
pub const AUTH_DIGEST_PLACEHOLDER: transaction::AuthDigest = transaction::AuthDigest([0xFF; 32]);

impl<T> std::iter::FromIterator<T> for AuthDataRoot
where
    T: std::convert::AsRef<Transaction>,
{
    fn from_iter<I>(transactions: I) -> Self
    where
        I: IntoIterator<Item = T>,
    {
        transactions
            .into_iter()
            .map(|tx| tx.as_ref().auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
            .collect()
    }
}

impl std::iter::FromIterator<UnminedTx> for AuthDataRoot {
    fn from_iter<I>(transactions: I) -> Self
    where
        I: IntoIterator<Item = UnminedTx>,
    {
        transactions
            .into_iter()
            .map(|tx| tx.id.auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
            .collect()
    }
}

impl std::iter::FromIterator<VerifiedUnminedTx> for AuthDataRoot {
    fn from_iter<I>(transactions: I) -> Self
    where
        I: IntoIterator<Item = VerifiedUnminedTx>,
    {
        transactions
            .into_iter()
            .map(|tx| {
                tx.transaction
                    .id
                    .auth_digest()
                    .unwrap_or(AUTH_DIGEST_PLACEHOLDER)
            })
            .collect()
    }
}

impl std::iter::FromIterator<UnminedTxId> for AuthDataRoot {
    fn from_iter<I>(tx_ids: I) -> Self
    where
        I: IntoIterator<Item = UnminedTxId>,
    {
        tx_ids
            .into_iter()
            .map(|tx_id| tx_id.auth_digest().unwrap_or(AUTH_DIGEST_PLACEHOLDER))
            .collect()
    }
}

impl std::iter::FromIterator<transaction::AuthDigest> for AuthDataRoot {
    fn from_iter<I>(hashes: I) -> Self
    where
        I: IntoIterator<Item = transaction::AuthDigest>,
    {
        let mut hashes = hashes.into_iter().map(|hash| hash.0).collect::<Vec<_>>();
        // > This new commitment is named hashAuthDataRoot and is the root of a
        // > binary Merkle tree of transaction authorizing data commitments [...]
        // > padded with leaves having the "null" hash value [0u8; 32].
        // https://zips.z.cash/zip-0244#block-header-changes
        // Pad with enough leaves to make the tree full (a power of 2).
        let pad_count = hashes.len().next_power_of_two() - hashes.len();
        hashes.extend(iter::repeat([0u8; 32]).take(pad_count));
        assert!(hashes.len().is_power_of_two());

        while hashes.len() > 1 {
            hashes = hashes
                .chunks(2)
                .map(|chunk| match chunk {
                    [h1, h2] => auth_data_hash(h1, h2),
                    _ => unreachable!("number of nodes is always even since tree is full"),
                })
                .collect();
        }

        Self(hashes[0])
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::{block::Block, serialization::ZcashDeserialize, transaction::AuthDigest};

    #[test]
    fn block_test_vectors() {
        for block_bytes in zebra_test::vectors::BLOCKS.iter() {
            let block = Block::zcash_deserialize(&**block_bytes).unwrap();
            let merkle_root = block.transactions.iter().collect::<Root>();
            assert_eq!(
                merkle_root,
                block.header.merkle_root,
                "block: {:?} {:?} transaction hashes: {:?}",
                block.coinbase_height().unwrap(),
                block.hash(),
                block
                    .transactions
                    .iter()
                    .map(|tx| tx.hash())
                    .collect::<Vec<_>>()
            );
        }
    }

    #[test]
    fn auth_digest() {
        for block_bytes in zebra_test::vectors::BLOCKS.iter() {
            let block = Block::zcash_deserialize(&**block_bytes).unwrap();
            let _auth_root = block.transactions.iter().collect::<AuthDataRoot>();
            // No test vectors for now, so just check it computes without panicking
        }
    }

    #[test]
    fn auth_data_padding() {
        // Compute the root of a 3-leaf tree with arbitrary leaves
        let mut v = vec![
            AuthDigest([0x42; 32]),
            AuthDigest([0xAA; 32]),
            AuthDigest([0x77; 32]),
        ];
        let root_3 = v.iter().copied().collect::<AuthDataRoot>();

        // Compute the root a 4-leaf tree with the same leaves as before and
        // an additional all-zeroes leaf.
        // Since this is the same leaf used as padding in the previous tree,
        // then both trees must have the same root.
        v.push(AuthDigest([0x00; 32]));
        let root_4 = v.iter().copied().collect::<AuthDataRoot>();

        assert_eq!(root_3, root_4);
    }

    #[test]
    fn auth_data_pre_v5() {
        // Compute the AuthDataRoot for a single transaction of an arbitrary pre-V5 block
        let block =
            Block::zcash_deserialize(&**zebra_test::vectors::BLOCK_MAINNET_1046400_BYTES).unwrap();
        let auth_root = block.transactions.iter().take(1).collect::<AuthDataRoot>();

        // Compute the AuthDataRoot with a single [0xFF; 32] digest.
        // Since ZIP-244 specifies that this value must be used as the auth digest of
        // pre-V5 transactions, then the roots must match.
        let expect_auth_root = [AuthDigest([0xFF; 32])]
            .iter()
            .copied()
            .collect::<AuthDataRoot>();

        assert_eq!(auth_root, expect_auth_root);
    }
}