1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
//! Wrapper service for batching items to an underlying service.
use std::{
cmp::max,
fmt,
future::Future,
pin::Pin,
sync::{Arc, Mutex},
task::{Context, Poll},
};
use futures_core::ready;
use tokio::{
pin,
sync::{mpsc, oneshot, OwnedSemaphorePermit, Semaphore},
task::JoinHandle,
};
use tokio_util::sync::PollSemaphore;
use tower::Service;
use tracing::{info_span, Instrument};
use super::{
future::ResponseFuture,
message::Message,
worker::{ErrorHandle, Worker},
BatchControl,
};
/// The maximum number of batches in the queue.
///
/// This avoids having very large queues on machines with hundreds or thousands of cores.
pub const QUEUE_BATCH_LIMIT: usize = 64;
/// Allows batch processing of requests.
///
/// See the crate documentation for more details.
pub struct Batch<T, Request>
where
T: Service<BatchControl<Request>>,
{
// Batch management
//
/// A custom-bounded channel for sending requests to the batch worker.
///
/// Note: this actually _is_ bounded, but rather than using Tokio's unbounded
/// channel, we use tokio's semaphore separately to implement the bound.
tx: mpsc::UnboundedSender<Message<Request, T::Future>>,
/// A semaphore used to bound the channel.
///
/// When the buffer's channel is full, we want to exert backpressure in
/// `poll_ready`, so that callers such as load balancers could choose to call
/// another service rather than waiting for buffer capacity.
///
/// Unfortunately, this can't be done easily using Tokio's bounded MPSC
/// channel, because it doesn't wake pending tasks on close. Therefore, we implement our
/// own bounded MPSC on top of the unbounded channel, using a semaphore to
/// limit how many items are in the channel.
semaphore: PollSemaphore,
/// A semaphore permit that allows this service to send one message on `tx`.
permit: Option<OwnedSemaphorePermit>,
// Errors
//
/// An error handle shared between all service clones for the same worker.
error_handle: ErrorHandle,
/// A worker task handle shared between all service clones for the same worker.
///
/// Only used when the worker is spawned on the tokio runtime.
worker_handle: Arc<Mutex<Option<JoinHandle<()>>>>,
}
impl<T, Request> fmt::Debug for Batch<T, Request>
where
T: Service<BatchControl<Request>>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let name = std::any::type_name::<Self>();
f.debug_struct(name)
.field("tx", &self.tx)
.field("semaphore", &self.semaphore)
.field("permit", &self.permit)
.field("error_handle", &self.error_handle)
.field("worker_handle", &self.worker_handle)
.finish()
}
}
impl<T, Request> Batch<T, Request>
where
T: Service<BatchControl<Request>>,
T::Future: Send + 'static,
T::Error: Into<crate::BoxError>,
{
/// Creates a new `Batch` wrapping `service`.
///
/// The wrapper is responsible for telling the inner service when to flush a
/// batch of requests. These parameters control this policy:
///
/// * `max_items_in_batch` gives the maximum number of items per batch.
/// * `max_batches` is an upper bound on the number of batches in the queue,
/// and the number of concurrently executing batches.
/// If this is `None`, we use the current number of [`rayon`] threads.
/// The number of batches in the queue is also limited by [`QUEUE_BATCH_LIMIT`].
/// * `max_latency` gives the maximum latency for a batch item to start verifying.
///
/// The default Tokio executor is used to run the given service, which means
/// that this method must be called while on the Tokio runtime.
pub fn new(
service: T,
max_items_in_batch: usize,
max_batches: impl Into<Option<usize>>,
max_latency: std::time::Duration,
) -> Self
where
T: Send + 'static,
T::Future: Send,
T::Response: Send,
T::Error: Send + Sync,
Request: Send + 'static,
{
let (mut batch, worker) = Self::pair(service, max_items_in_batch, max_batches, max_latency);
let span = info_span!("batch worker", kind = std::any::type_name::<T>());
#[cfg(tokio_unstable)]
let worker_handle = {
let batch_kind = std::any::type_name::<T>();
// TODO: identify the unique part of the type name generically,
// or make it an argument to this method
let batch_kind = batch_kind.trim_start_matches("zebra_consensus::primitives::");
let batch_kind = batch_kind.trim_end_matches("::Verifier");
tokio::task::Builder::new()
.name(&format!("{} batch", batch_kind))
.spawn(worker.run().instrument(span))
};
#[cfg(not(tokio_unstable))]
let worker_handle = tokio::spawn(worker.run().instrument(span));
batch.register_worker(worker_handle);
batch
}
/// Creates a new `Batch` wrapping `service`, but returns the background worker.
///
/// This is useful if you do not want to spawn directly onto the `tokio`
/// runtime but instead want to use your own executor. This will return the
/// `Batch` and the background `Worker` that you can then spawn.
pub fn pair(
service: T,
max_items_in_batch: usize,
max_batches: impl Into<Option<usize>>,
max_latency: std::time::Duration,
) -> (Self, Worker<T, Request>)
where
T: Send + 'static,
T::Error: Send + Sync,
Request: Send + 'static,
{
let (tx, rx) = mpsc::unbounded_channel();
// Clamp config to sensible values.
let max_items_in_batch = max(max_items_in_batch, 1);
let max_batches = max_batches
.into()
.unwrap_or_else(rayon::current_num_threads);
let max_batches_in_queue = max_batches.clamp(1, QUEUE_BATCH_LIMIT);
// The semaphore bound limits the maximum number of concurrent requests
// (specifically, requests which got a `Ready` from `poll_ready`, but haven't
// used their semaphore reservation in a `call` yet).
//
// We choose a bound that allows callers to check readiness for one batch per rayon CPU thread.
// This helps keep all CPUs filled with work: there is one batch executing, and another ready to go.
// Often there is only one verifier running, when that happens we want it to take all the cores.
let semaphore = Semaphore::new(max_items_in_batch * max_batches_in_queue);
let semaphore = PollSemaphore::new(Arc::new(semaphore));
let (error_handle, worker) = Worker::new(
service,
rx,
max_items_in_batch,
max_batches,
max_latency,
semaphore.clone(),
);
let batch = Batch {
tx,
semaphore,
permit: None,
error_handle,
worker_handle: Arc::new(Mutex::new(None)),
};
(batch, worker)
}
/// Ask the `Batch` to monitor the spawned worker task's [`JoinHandle`].
///
/// Only used when the task is spawned on the tokio runtime.
pub fn register_worker(&mut self, worker_handle: JoinHandle<()>) {
*self
.worker_handle
.lock()
.expect("previous task panicked while holding the worker handle mutex") =
Some(worker_handle);
}
/// Returns the error from the batch worker's `error_handle`.
fn get_worker_error(&self) -> crate::BoxError {
self.error_handle.get_error_on_closed()
}
}
impl<T, Request> Service<Request> for Batch<T, Request>
where
T: Service<BatchControl<Request>>,
T::Future: Send + 'static,
T::Error: Into<crate::BoxError>,
{
type Response = T::Response;
type Error = crate::BoxError;
type Future = ResponseFuture<T::Future>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
// Check to see if the worker has returned or panicked.
//
// Correctness: Registers this task for wakeup when the worker finishes.
if let Some(worker_handle) = self
.worker_handle
.lock()
.expect("previous task panicked while holding the worker handle mutex")
.as_mut()
{
match Pin::new(worker_handle).poll(cx) {
Poll::Ready(Ok(())) => return Poll::Ready(Err(self.get_worker_error())),
Poll::Ready(Err(task_cancelled)) if task_cancelled.is_cancelled() => {
tracing::warn!(
"batch task cancelled: {task_cancelled}\n\
Is Zebra shutting down?"
);
return Poll::Ready(Err(task_cancelled.into()));
}
Poll::Ready(Err(task_panic)) => {
std::panic::resume_unwind(task_panic.into_panic());
}
Poll::Pending => {}
}
}
// Check if the worker has set an error and closed its channels.
//
// Correctness: Registers this task for wakeup when the channel is closed.
let tx = self.tx.clone();
let closed = tx.closed();
pin!(closed);
if closed.poll(cx).is_ready() {
return Poll::Ready(Err(self.get_worker_error()));
}
// Poll to acquire a semaphore permit.
//
// CORRECTNESS
//
// If we acquire a permit, then there's enough buffer capacity to send a new request.
// Otherwise, we need to wait for capacity. When that happens, `poll_acquire()` registers
// this task for wakeup when the next permit is available, or when the semaphore is closed.
//
// When `poll_ready()` is called multiple times, and channel capacity is 1,
// avoid deadlocks by dropping any previous permit before acquiring another one.
// This also stops tasks holding a permit after an error.
//
// Calling `poll_ready()` multiple times can make tasks lose their previous permit
// to another concurrent task.
self.permit = None;
let permit = ready!(self.semaphore.poll_acquire(cx));
if let Some(permit) = permit {
// Calling poll_ready() more than once will drop any previous permit,
// releasing its capacity back to the semaphore.
self.permit = Some(permit);
} else {
// The semaphore has been closed.
return Poll::Ready(Err(self.get_worker_error()));
}
Poll::Ready(Ok(()))
}
fn call(&mut self, request: Request) -> Self::Future {
tracing::trace!("sending request to buffer worker");
let _permit = self
.permit
.take()
.expect("poll_ready must be called before a batch request");
// get the current Span so that we can explicitly propagate it to the worker
// if we didn't do this, events on the worker related to this span wouldn't be counted
// towards that span since the worker would have no way of entering it.
let span = tracing::Span::current();
// If we've made it here, then a semaphore permit has already been
// acquired, so we can freely allocate a oneshot.
let (tx, rx) = oneshot::channel();
match self.tx.send(Message {
request,
tx,
span,
_permit,
}) {
Err(_) => ResponseFuture::failed(self.get_worker_error()),
Ok(_) => ResponseFuture::new(rx),
}
}
}
impl<T, Request> Clone for Batch<T, Request>
where
T: Service<BatchControl<Request>>,
{
fn clone(&self) -> Self {
Self {
tx: self.tx.clone(),
semaphore: self.semaphore.clone(),
permit: None,
error_handle: self.error_handle.clone(),
worker_handle: self.worker_handle.clone(),
}
}
}