1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//! Encrypted parts of Orchard notes.

use std::{fmt, io};

use serde_big_array::BigArray;

use crate::serialization::{SerializationError, ZcashDeserialize, ZcashSerialize};

/// A ciphertext component for encrypted output notes.
///
/// Corresponds to the Orchard 'encCiphertext's
#[derive(Deserialize, Serialize)]
pub struct EncryptedNote(#[serde(with = "BigArray")] pub(crate) [u8; 580]);

// These impls all only exist because of array length restrictions.
// TODO: use const generics https://github.com/ZcashFoundation/zebra/issues/2042

impl Copy for EncryptedNote {}

impl Clone for EncryptedNote {
    fn clone(&self) -> Self {
        *self
    }
}

impl fmt::Debug for EncryptedNote {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("EncryptedNote")
            .field(&hex::encode(&self.0[..]))
            .finish()
    }
}

impl Eq for EncryptedNote {}

impl From<[u8; 580]> for EncryptedNote {
    fn from(bytes: [u8; 580]) -> Self {
        EncryptedNote(bytes)
    }
}

impl From<EncryptedNote> for [u8; 580] {
    fn from(enc_ciphertext: EncryptedNote) -> Self {
        enc_ciphertext.0
    }
}

impl PartialEq for EncryptedNote {
    fn eq(&self, other: &Self) -> bool {
        self.0[..] == other.0[..]
    }
}

impl ZcashSerialize for EncryptedNote {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_all(&self.0[..])?;
        Ok(())
    }
}

impl ZcashDeserialize for EncryptedNote {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        let mut bytes = [0; 580];
        reader.read_exact(&mut bytes[..])?;
        Ok(Self(bytes))
    }
}

/// A ciphertext component for encrypted output notes.
///
/// Corresponds to Orchard's 'outCiphertext'
#[derive(Deserialize, Serialize)]
pub struct WrappedNoteKey(#[serde(with = "BigArray")] pub(crate) [u8; 80]);

impl fmt::Debug for WrappedNoteKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("WrappedNoteKey")
            .field(&hex::encode(&self.0[..]))
            .finish()
    }
}

// These impls all only exist because of array length restrictions.

impl Copy for WrappedNoteKey {}

impl Clone for WrappedNoteKey {
    fn clone(&self) -> Self {
        *self
    }
}

impl From<[u8; 80]> for WrappedNoteKey {
    fn from(bytes: [u8; 80]) -> Self {
        WrappedNoteKey(bytes)
    }
}

impl From<WrappedNoteKey> for [u8; 80] {
    fn from(out_ciphertext: WrappedNoteKey) -> Self {
        out_ciphertext.0
    }
}

impl PartialEq for WrappedNoteKey {
    fn eq(&self, other: &Self) -> bool {
        self.0[..] == other.0[..]
    }
}

impl Eq for WrappedNoteKey {}

impl ZcashSerialize for WrappedNoteKey {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_all(&self.0[..])?;
        Ok(())
    }
}

impl ZcashDeserialize for WrappedNoteKey {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        let mut bytes = [0; 80];
        reader.read_exact(&mut bytes[..])?;
        Ok(Self(bytes))
    }
}

#[cfg(test)]
use proptest::prelude::*;
#[cfg(test)]
proptest! {

    #[test]
    fn encrypted_ciphertext_roundtrip(ec in any::<EncryptedNote>()) {
        let _init_guard = zebra_test::init();

        let mut data = Vec::new();

        ec.zcash_serialize(&mut data).expect("EncryptedNote should serialize");

        let ec2 = EncryptedNote::zcash_deserialize(&data[..]).expect("randomized EncryptedNote should deserialize");

        prop_assert_eq![ec, ec2];
    }

    #[test]
    fn out_ciphertext_roundtrip(oc in any::<WrappedNoteKey>()) {
        let _init_guard = zebra_test::init();

        let mut data = Vec::new();

        oc.zcash_serialize(&mut data).expect("WrappedNoteKey should serialize");

        let oc2 = WrappedNoteKey::zcash_deserialize(&data[..]).expect("randomized WrappedNoteKey should deserialize");

        prop_assert_eq![oc, oc2];
    }
}