zebra_chain/block/
serialize.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
//! Serialization and deserialization for Zcash blocks.

use std::{borrow::Borrow, io};

use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use chrono::{TimeZone, Utc};

use crate::{
    block::{header::ZCASH_BLOCK_VERSION, merkle, Block, CountedHeader, Hash, Header},
    serialization::{
        CompactSizeMessage, ReadZcashExt, SerializationError, ZcashDeserialize,
        ZcashDeserializeInto, ZcashSerialize,
    },
    work::{difficulty::CompactDifficulty, equihash},
};

/// The maximum size of a Zcash block, in bytes.
///
/// Post-Sapling, this is also the maximum size of a transaction
/// in the Zcash specification. (But since blocks also contain a
/// block header and transaction count, the maximum size of a
/// transaction in the chain is approximately 1.5 kB smaller.)
pub const MAX_BLOCK_BYTES: u64 = 2_000_000;

/// Checks if a block header version is valid.
///
/// Zebra could encounter a [`Header`] with an invalid version when serializing a block header constructed
/// in memory with the wrong version in tests or the getblocktemplate RPC.
///
/// The getblocktemplate RPC generates a template with version 4. The miner generates the actual block,
/// and then we deserialize it and do this check.
///
/// All other blocks are deserialized when we receive them, and never modified,
/// so the deserialisation would pick up any errors.
fn check_version(version: u32) -> Result<(), &'static str> {
    match version {
        // The Zcash specification says that:
        // "The current and only defined block version number for Zcash is 4."
        // but this is not actually part of the consensus rules, and in fact
        // broken mining software created blocks that do not have version 4.
        // There are approximately 4,000 blocks with version 536870912; this
        // is the bit-reversal of the value 4, indicating that that mining pool
        // reversed bit-ordering of the version field. Because the version field
        // was not properly validated, these blocks were added to the chain.
        //
        // The only possible way to work around this is to do a similar hack
        // as the overwintered field in transaction parsing, which we do here:
        // treat the high bit (which zcashd interprets as a sign bit) as an
        // indicator that the version field is meaningful.
        version if version >> 31 != 0 => Err("high bit was set in version field"),

        // # Consensus
        //
        // > The block version number MUST be greater than or equal to 4.
        //
        // https://zips.z.cash/protocol/protocol.pdf#blockheader
        version if version < ZCASH_BLOCK_VERSION => Err("version must be at least 4"),

        _ => Ok(()),
    }
}

impl ZcashSerialize for Header {
    #[allow(clippy::unwrap_in_result)]
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        check_version(self.version).map_err(|msg| io::Error::new(io::ErrorKind::Other, msg))?;

        writer.write_u32::<LittleEndian>(self.version)?;
        self.previous_block_hash.zcash_serialize(&mut writer)?;
        writer.write_all(&self.merkle_root.0[..])?;
        writer.write_all(&self.commitment_bytes[..])?;
        writer.write_u32::<LittleEndian>(
            self.time
                .timestamp()
                .try_into()
                .expect("deserialized and generated timestamps are u32 values"),
        )?;
        writer.write_u32::<LittleEndian>(self.difficulty_threshold.0)?;
        writer.write_all(&self.nonce[..])?;
        self.solution.zcash_serialize(&mut writer)?;
        Ok(())
    }
}

impl ZcashDeserialize for Header {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        let version = reader.read_u32::<LittleEndian>()?;
        check_version(version).map_err(SerializationError::Parse)?;

        Ok(Header {
            version,
            previous_block_hash: Hash::zcash_deserialize(&mut reader)?,
            merkle_root: merkle::Root(reader.read_32_bytes()?),
            commitment_bytes: reader.read_32_bytes()?.into(),
            // This can't panic, because all u32 values are valid `Utc.timestamp`s
            time: Utc
                .timestamp_opt(reader.read_u32::<LittleEndian>()?.into(), 0)
                .single()
                .ok_or(SerializationError::Parse(
                    "out-of-range number of seconds and/or invalid nanosecond",
                ))?,
            difficulty_threshold: CompactDifficulty(reader.read_u32::<LittleEndian>()?),
            nonce: reader.read_32_bytes()?.into(),
            solution: equihash::Solution::zcash_deserialize(reader)?,
        })
    }
}

impl ZcashSerialize for CountedHeader {
    #[allow(clippy::unwrap_in_result)]
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        self.header.zcash_serialize(&mut writer)?;

        // A header-only message has zero transactions in it.
        let transaction_count =
            CompactSizeMessage::try_from(0).expect("0 is below the message size limit");
        transaction_count.zcash_serialize(&mut writer)?;

        Ok(())
    }
}

impl ZcashDeserialize for CountedHeader {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        let header = CountedHeader {
            header: (&mut reader).zcash_deserialize_into()?,
        };

        // We ignore the number of transactions in a header-only message,
        // it should always be zero.
        let _transaction_count: CompactSizeMessage = (&mut reader).zcash_deserialize_into()?;

        Ok(header)
    }
}

impl ZcashSerialize for Block {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        // All block structs are validated when they are parsed.
        // So we don't need to check MAX_BLOCK_BYTES here, until
        // we start generating our own blocks (see #483).
        self.header.zcash_serialize(&mut writer)?;
        self.transactions.zcash_serialize(&mut writer)?;
        Ok(())
    }
}

impl ZcashDeserialize for Block {
    fn zcash_deserialize<R: io::Read>(reader: R) -> Result<Self, SerializationError> {
        // # Consensus
        //
        // > The size of a block MUST be less than or equal to 2000000 bytes.
        //
        // https://zips.z.cash/protocol/protocol.pdf#blockheader
        //
        // If the limit is reached, we'll get an UnexpectedEof error
        let limited_reader = &mut reader.take(MAX_BLOCK_BYTES);
        Ok(Block {
            header: limited_reader.zcash_deserialize_into()?,
            transactions: limited_reader.zcash_deserialize_into()?,
        })
    }
}

/// A serialized block.
///
/// Stores bytes that are guaranteed to be deserializable into a [`Block`].
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct SerializedBlock {
    bytes: Vec<u8>,
}

/// Build a [`SerializedBlock`] by serializing a block.
impl<B: Borrow<Block>> From<B> for SerializedBlock {
    fn from(block: B) -> Self {
        SerializedBlock {
            bytes: block
                .borrow()
                .zcash_serialize_to_vec()
                .expect("Writing to a `Vec` should never fail"),
        }
    }
}

/// Access the serialized bytes of a [`SerializedBlock`].
impl AsRef<[u8]> for SerializedBlock {
    fn as_ref(&self) -> &[u8] {
        self.bytes.as_ref()
    }
}

impl From<Vec<u8>> for SerializedBlock {
    fn from(bytes: Vec<u8>) -> Self {
        Self { bytes }
    }
}