1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
//! Block difficulty data structures and calculations
//!
//! The block difficulty "target threshold" is stored in the block header as a
//! 32-bit `CompactDifficulty`. The `block::Hash` must be less than or equal
//! to the `ExpandedDifficulty` threshold, when represented as a 256-bit integer
//! in little-endian order.
//!
//! The target threshold is also used to calculate the `Work` for each block.
//! The block work is used to find the chain with the greatest total work. Each
//! block's work value depends on the fixed threshold in the block header, not
//! the actual work represented by the block header hash.

use std::{
    cmp::{Ordering, PartialEq, PartialOrd},
    fmt,
    iter::Sum,
    ops::{Add, Div, Mul},
};

use hex::{FromHex, ToHex};

use crate::{block, parameters::Network, BoxError};

pub use crate::work::u256::U256;

#[cfg(any(test, feature = "proptest-impl"))]
mod arbitrary;
#[cfg(test)]
mod tests;

/// A 32-bit "compact bits" value, which represents the difficulty threshold for
/// a block header.
///
/// Used for:
///   - checking the `difficulty_threshold` value in the block header,
///   - calculating the 256-bit `ExpandedDifficulty` threshold, for comparison
///     with the block header hash, and
///   - calculating the block work.
///
/// # Consensus
///
/// This is a floating-point encoding, with a 24-bit signed mantissa,
/// an 8-bit exponent, an offset of 3, and a radix of 256.
/// (IEEE 754 32-bit floating-point values use a separate sign bit, an implicit
/// leading mantissa bit, an offset of 127, and a radix of 2.)
///
/// The precise bit pattern of a `CompactDifficulty` value is
/// consensus-critical, because it is used for the `difficulty_threshold` field,
/// which is:
///   - part of the `BlockHeader`, which is used to create the
///     `block::Hash`, and
///   - bitwise equal to the median `ExpandedDifficulty` value of recent blocks,
///     when encoded to `CompactDifficulty` using the specified conversion
///     function.
///
/// Without these consensus rules, some `ExpandedDifficulty` values would have
/// multiple equivalent `CompactDifficulty` values, due to redundancy in the
/// floating-point format.
///
/// > Deterministic conversions between a target threshold and a “compact" nBits value
/// > are not fully defined in the Bitcoin documentation, and so we define them here:
/// > (see equations in the Zcash Specification [section 7.7.4])
///
/// [section 7.7.4]: https://zips.z.cash/protocol/protocol.pdf#nbits
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Default))]
pub struct CompactDifficulty(pub(crate) u32);

/// An invalid CompactDifficulty value, for testing.
pub const INVALID_COMPACT_DIFFICULTY: CompactDifficulty = CompactDifficulty(u32::MAX);

/// A 256-bit unsigned "expanded difficulty" value.
///
/// Used as a target threshold for the difficulty of a `block::Hash`.
///
/// # Consensus
///
/// The precise bit pattern of an `ExpandedDifficulty` value is
/// consensus-critical, because it is compared with the `block::Hash`.
///
/// Note that each `CompactDifficulty` value can be converted from a
/// range of `ExpandedDifficulty` values, because the precision of
/// the floating-point format requires rounding on conversion.
///
/// Therefore, consensus-critical code must perform the specified
/// conversions to `CompactDifficulty`, even if the original
/// `ExpandedDifficulty` values are known.
///
/// Callers should avoid constructing `ExpandedDifficulty` zero
/// values, because they are rejected by the consensus rules,
/// and cause some conversion functions to panic.
///
/// > The difficulty filter is unchanged from Bitcoin, and is calculated using SHA-256d on the
/// > whole block header (including solutionSize and solution). The result is interpreted as a
/// > 256-bit integer represented in little-endian byte order, which MUST be less than or equal
/// > to the target threshold given by ToTarget(nBits).
///
/// Zcash Specification [section 7.7.2].
///
/// [section 7.7.2]: https://zips.z.cash/protocol/protocol.pdf#difficulty
//
// TODO: Use NonZeroU256, when available
#[derive(Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct ExpandedDifficulty(U256);

/// A 128-bit unsigned "Work" value.
///
/// Used to calculate the total work for each chain of blocks.
///
/// # Consensus
///
/// The relative value of `Work` is consensus-critical, because it is used to
/// choose the best chain. But its precise value and bit pattern are not
/// consensus-critical.
///
/// We calculate work values according to the Zcash specification, but store
/// them as u128, rather than the implied u256. We don't expect the total chain
/// work to ever exceed 2^128. The current total chain work for Zcash is 2^58,
/// and Bitcoin adds around 2^91 work per year. (Each extra bit represents twice
/// as much work.)
///
/// > a node chooses the “best” block chain visible to it by finding the chain of valid blocks
/// > with the greatest total work. The work of a block with value nBits for the nBits field in
/// > its block header is defined as `floor(2^256 / (ToTarget(nBits) + 1))`.
///
/// Zcash Specification [section 7.7.5].
///
/// [section 7.7.5]: https://zips.z.cash/protocol/protocol.pdf#workdef
#[derive(Clone, Copy, Default, Eq, PartialEq, Ord, PartialOrd)]
pub struct Work(u128);

impl Work {
    /// Returns a value representing no work.
    pub fn zero() -> Self {
        Self(0)
    }

    /// Return the inner `u128` value.
    pub fn as_u128(self) -> u128 {
        self.0
    }
}

impl fmt::Debug for Work {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // There isn't a standard way to show different representations of the
        // same value
        f.debug_tuple("Work")
            // Use hex, because expanded difficulty is in hex.
            .field(&format_args!("{:#x}", self.0))
            // Use decimal, to compare with zcashd
            .field(&format_args!("{}", self.0))
            // Use log2, to compare with zcashd
            .field(&format_args!("{:.5}", (self.0 as f64).log2()))
            .finish()
    }
}

impl CompactDifficulty {
    /// CompactDifficulty exponent base.
    const BASE: u32 = 256;

    /// CompactDifficulty exponent offset.
    const OFFSET: i32 = 3;

    /// CompactDifficulty floating-point precision.
    const PRECISION: u32 = 24;

    /// CompactDifficulty sign bit, part of the signed mantissa.
    const SIGN_BIT: u32 = 1 << (CompactDifficulty::PRECISION - 1);

    /// CompactDifficulty unsigned mantissa mask.
    ///
    /// Also the maximum unsigned mantissa value.
    const UNSIGNED_MANTISSA_MASK: u32 = CompactDifficulty::SIGN_BIT - 1;

    /// Calculate the ExpandedDifficulty for a compact representation.
    ///
    /// See `ToTarget()` in the Zcash Specification, and `CheckProofOfWork()` in
    /// zcashd:
    /// <https://zips.z.cash/protocol/protocol.pdf#nbits>
    ///
    /// Returns None for negative, zero, and overflow values. (zcashd rejects
    /// these values, before comparing the hash.)
    #[allow(clippy::unwrap_in_result)]
    pub fn to_expanded(self) -> Option<ExpandedDifficulty> {
        // The constants for this floating-point representation.
        // Alias the struct constants here, so the code is easier to read.
        const BASE: u32 = CompactDifficulty::BASE;
        const OFFSET: i32 = CompactDifficulty::OFFSET;
        const PRECISION: u32 = CompactDifficulty::PRECISION;
        const SIGN_BIT: u32 = CompactDifficulty::SIGN_BIT;
        const UNSIGNED_MANTISSA_MASK: u32 = CompactDifficulty::UNSIGNED_MANTISSA_MASK;

        // Negative values in this floating-point representation.
        // 0 if (x & 2^23 == 2^23)
        // zcashd rejects negative values without comparing the hash.
        if self.0 & SIGN_BIT == SIGN_BIT {
            return None;
        }

        // The components of the result
        // The fractional part of the floating-point number
        // x & (2^23 - 1)
        let mantissa = self.0 & UNSIGNED_MANTISSA_MASK;

        // The exponent for the multiplier in the floating-point number
        // 256^(floor(x/(2^24)) - 3)
        //
        // The i32 conversion is safe, because we've just divided self by 2^24.
        let exponent = i32::try_from(self.0 >> PRECISION).expect("fits in i32") - OFFSET;

        // Normalise the mantissa and exponent before multiplying.
        //
        // zcashd rejects non-zero overflow values, but accepts overflows where
        // all the overflowing bits are zero. It also allows underflows.
        let (mantissa, exponent) = match (mantissa, exponent) {
            // Overflow: check for non-zero overflow bits
            //
            // If m is non-zero, overflow. If m is zero, invalid.
            (_, e) if (e >= 32) => return None,
            // If m is larger than the remaining bytes, overflow.
            // Otherwise, avoid overflows in base^exponent.
            (m, e) if (e == 31 && m > u8::MAX.into()) => return None,
            (m, e) if (e == 31 && m <= u8::MAX.into()) => (m << 16, e - 2),
            (m, e) if (e == 30 && m > u16::MAX.into()) => return None,
            (m, e) if (e == 30 && m <= u16::MAX.into()) => (m << 8, e - 1),

            // Underflow: perform the right shift.
            // The abs is safe, because we've just divided by 2^24, and offset
            // is small.
            (m, e) if (e < 0) => (m >> ((e.abs() * 8) as u32), 0),
            (m, e) => (m, e),
        };

        // Now calculate the result: mantissa*base^exponent
        // Earlier code should make sure all these values are in range.
        let mantissa: U256 = mantissa.into();
        let base: U256 = BASE.into();
        let exponent: U256 = exponent.into();
        let result = mantissa * base.pow(exponent);

        if result == U256::zero() {
            // zcashd rejects zero values, without comparing the hash
            None
        } else {
            Some(result.into())
        }
    }

    /// Calculate the Work for a compact representation.
    ///
    /// See `Definition of Work` in the [Zcash Specification], and
    /// `GetBlockProof()` in zcashd.
    ///
    /// Returns None if the corresponding ExpandedDifficulty is None.
    /// Also returns None on Work overflow, which should be impossible on a
    /// valid chain.
    ///
    /// [Zcash Specification]: https://zips.z.cash/protocol/protocol.pdf#workdef
    pub fn to_work(self) -> Option<Work> {
        let expanded = self.to_expanded()?;
        Work::try_from(expanded).ok()
    }

    /// Return the difficulty bytes in big-endian byte-order.
    ///
    /// Zebra displays difficulties in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    pub fn bytes_in_display_order(&self) -> [u8; 4] {
        self.0.to_be_bytes()
    }

    /// Convert bytes in big-endian byte-order into a [`CompactDifficulty`].
    ///
    /// Zebra displays difficulties in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    ///
    /// Returns an error if the difficulty value is invalid.
    pub fn from_bytes_in_display_order(
        bytes_in_display_order: &[u8; 4],
    ) -> Result<CompactDifficulty, BoxError> {
        let internal_byte_order = u32::from_be_bytes(*bytes_in_display_order);

        let difficulty = CompactDifficulty(internal_byte_order);

        if difficulty.to_expanded().is_none() {
            return Err("invalid difficulty value".into());
        }

        Ok(difficulty)
    }
}

impl fmt::Debug for CompactDifficulty {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // There isn't a standard way to show different representations of the
        // same value
        f.debug_tuple("CompactDifficulty")
            // Use hex, because it's a float
            .field(&format_args!("{:#010x}", self.0))
            // Use expanded difficulty, for bitwise difficulty comparisons
            .field(&format_args!("{:?}", self.to_expanded()))
            .finish()
    }
}

impl fmt::Display for CompactDifficulty {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&self.encode_hex::<String>())
    }
}

impl ToHex for &CompactDifficulty {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex_upper()
    }
}

impl ToHex for CompactDifficulty {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex_upper()
    }
}

impl FromHex for CompactDifficulty {
    type Error = BoxError;

    fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
        let bytes_in_display_order = <[u8; 4]>::from_hex(hex)?;

        CompactDifficulty::from_bytes_in_display_order(&bytes_in_display_order)
    }
}

impl TryFrom<ExpandedDifficulty> for Work {
    type Error = ();

    fn try_from(expanded: ExpandedDifficulty) -> Result<Self, Self::Error> {
        // Consensus:
        //
        // <https://zips.z.cash/protocol/protocol.pdf#workdef>
        //
        // We need to compute `2^256 / (expanded + 1)`, but we can't represent
        // 2^256, as it's too large for a u256. However, as 2^256 is at least as
        // large as `expanded + 1`, it is equal to
        // `((2^256 - expanded - 1) / (expanded + 1)) + 1`, or
        let result = (!expanded.0 / (expanded.0 + 1)) + 1;
        if result <= u128::MAX.into() {
            Ok(Work(result.as_u128()))
        } else {
            Err(())
        }
    }
}

impl From<ExpandedDifficulty> for CompactDifficulty {
    fn from(value: ExpandedDifficulty) -> Self {
        value.to_compact()
    }
}

impl ExpandedDifficulty {
    /// Returns the difficulty of the hash.
    ///
    /// Used to implement comparisons between difficulties and hashes.
    ///
    /// Usage:
    ///
    /// Compare the hash with the calculated difficulty value, using Rust's
    /// standard comparison operators.
    ///
    /// Hashes are not used to calculate the difficulties of future blocks, so
    /// users of this module should avoid converting hashes into difficulties.
    pub(super) fn from_hash(hash: &block::Hash) -> ExpandedDifficulty {
        U256::from_little_endian(&hash.0).into()
    }

    /// Calculate the CompactDifficulty for an expanded difficulty.
    ///
    /// # Consensus
    ///
    /// See `ToCompact()` in the Zcash Specification, and `GetCompact()`
    /// in zcashd:
    /// <https://zips.z.cash/protocol/protocol.pdf#nbits>
    ///
    /// # Panics
    ///
    /// If `self` is zero.
    ///
    /// `ExpandedDifficulty` values are generated in two ways:
    ///   * conversion from `CompactDifficulty` values, which rejects zeroes, and
    ///   * difficulty adjustment calculations, which impose a non-zero minimum
    ///     `target_difficulty_limit`.
    ///
    /// Neither of these methods yield zero values.
    pub fn to_compact(self) -> CompactDifficulty {
        // The zcashd implementation supports negative and zero compact values.
        // These values are rejected by the protocol rules. Zebra is designed so
        // that invalid states are not representable. Therefore, this function
        // does not produce negative compact values, and panics on zero compact
        // values. (The negative compact value code in zcashd is unused.)
        assert!(self.0 > 0.into(), "Zero difficulty values are invalid");

        // The constants for this floating-point representation.
        // Alias the constants here, so the code is easier to read.
        const UNSIGNED_MANTISSA_MASK: u32 = CompactDifficulty::UNSIGNED_MANTISSA_MASK;
        const OFFSET: i32 = CompactDifficulty::OFFSET;

        // Calculate the final size, accounting for the sign bit.
        // This is the size *after* applying the sign bit adjustment in `ToCompact()`.
        let size = self.0.bits() / 8 + 1;

        // Make sure the mantissa is non-negative, by shifting down values that
        // would otherwise overflow into the sign bit
        let mantissa = if self.0 <= UNSIGNED_MANTISSA_MASK.into() {
            // Value is small, shift up if needed
            self.0 << (8 * (3 - size))
        } else {
            // Value is large, shift down
            self.0 >> (8 * (size - 3))
        };

        // This assertion also makes sure that size fits in its 8 bit compact field
        assert!(
            size < (31 + OFFSET) as _,
            "256^size (256^{size}) must fit in a u256, after the sign bit adjustment and offset"
        );
        let size = u32::try_from(size).expect("a 0-6 bit value fits in a u32");

        assert!(
            mantissa <= UNSIGNED_MANTISSA_MASK.into(),
            "mantissa {mantissa:x?} must fit in its compact field"
        );
        let mantissa = u32::try_from(mantissa).expect("a 0-23 bit value fits in a u32");

        if mantissa > 0 {
            CompactDifficulty(mantissa + (size << 24))
        } else {
            // This check catches invalid mantissas. Overflows and underflows
            // should also be unreachable, but they aren't caught here.
            unreachable!("converted CompactDifficulty values must be valid")
        }
    }

    /// Return the difficulty bytes in big-endian byte-order,
    /// suitable for printing out byte by byte.
    ///
    /// Zebra displays difficulties in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    pub fn bytes_in_display_order(&self) -> [u8; 32] {
        let mut reversed_bytes = [0; 32];
        self.0.to_big_endian(&mut reversed_bytes);

        reversed_bytes
    }

    /// Convert bytes in big-endian byte-order into an [`ExpandedDifficulty`].
    ///
    /// Zebra displays difficulties in big-endian byte-order,
    /// following the u256 convention set by Bitcoin and zcashd.
    ///
    /// Preserves the exact difficulty value represented by the bytes,
    /// even if it can't be generated from a [`CompactDifficulty`].
    /// This means a round-trip conversion to [`CompactDifficulty`] can be lossy.
    pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> ExpandedDifficulty {
        let internal_byte_order = U256::from_big_endian(bytes_in_display_order);

        ExpandedDifficulty(internal_byte_order)
    }
}

impl fmt::Display for ExpandedDifficulty {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&self.encode_hex::<String>())
    }
}

impl fmt::Debug for ExpandedDifficulty {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("ExpandedDifficulty")
            .field(&self.encode_hex::<String>())
            .finish()
    }
}

impl ToHex for &ExpandedDifficulty {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        self.bytes_in_display_order().encode_hex_upper()
    }
}

impl ToHex for ExpandedDifficulty {
    fn encode_hex<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex()
    }

    fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
        (&self).encode_hex_upper()
    }
}

impl FromHex for ExpandedDifficulty {
    type Error = <[u8; 32] as FromHex>::Error;

    fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
        let bytes_in_display_order = <[u8; 32]>::from_hex(hex)?;

        Ok(ExpandedDifficulty::from_bytes_in_display_order(
            &bytes_in_display_order,
        ))
    }
}

impl From<U256> for ExpandedDifficulty {
    fn from(value: U256) -> Self {
        ExpandedDifficulty(value)
    }
}

impl From<ExpandedDifficulty> for U256 {
    fn from(value: ExpandedDifficulty) -> Self {
        value.0
    }
}

impl Sum<ExpandedDifficulty> for ExpandedDifficulty {
    fn sum<I: Iterator<Item = ExpandedDifficulty>>(iter: I) -> Self {
        iter.map(|d| d.0).fold(U256::zero(), Add::add).into()
    }
}

impl<T> Div<T> for ExpandedDifficulty
where
    T: Into<U256>,
{
    type Output = ExpandedDifficulty;

    fn div(self, rhs: T) -> Self::Output {
        ExpandedDifficulty(self.0 / rhs)
    }
}

impl<T> Mul<T> for ExpandedDifficulty
where
    U256: Mul<T>,
    <U256 as Mul<T>>::Output: Into<U256>,
{
    type Output = ExpandedDifficulty;

    fn mul(self, rhs: T) -> ExpandedDifficulty {
        ExpandedDifficulty((self.0 * rhs).into())
    }
}

impl PartialEq<block::Hash> for ExpandedDifficulty {
    /// Is `self` equal to `other`?
    ///
    /// See `partial_cmp` for details.
    fn eq(&self, other: &block::Hash) -> bool {
        self.partial_cmp(other) == Some(Ordering::Equal)
    }
}

impl PartialOrd<block::Hash> for ExpandedDifficulty {
    /// # Consensus
    ///
    /// `block::Hash`es are compared with `ExpandedDifficulty` thresholds by
    /// converting the hash to a 256-bit integer in little-endian order.
    ///
    /// Greater values represent *less* work. This matches the convention in
    /// zcashd and bitcoin.
    ///
    /// <https://zips.z.cash/protocol/protocol.pdf#workdef>
    fn partial_cmp(&self, other: &block::Hash) -> Option<Ordering> {
        self.partial_cmp(&ExpandedDifficulty::from_hash(other))
    }
}

impl PartialEq<ExpandedDifficulty> for block::Hash {
    /// Is `self` equal to `other`?
    ///
    /// See `<ExpandedDifficulty as PartialOrd<block::Hash>::partial_cmp`
    /// for details.
    fn eq(&self, other: &ExpandedDifficulty) -> bool {
        other.eq(self)
    }
}

impl PartialOrd<ExpandedDifficulty> for block::Hash {
    /// How does `self` compare to `other`?
    ///
    /// # Consensus
    ///
    /// See `<ExpandedDifficulty as PartialOrd<block::Hash>::partial_cmp`
    /// for details.
    #[allow(clippy::unwrap_in_result)]
    fn partial_cmp(&self, other: &ExpandedDifficulty) -> Option<Ordering> {
        Some(
            // Use the canonical implementation, but reverse the order
            other
                .partial_cmp(self)
                .expect("difficulties and hashes have a total order")
                .reverse(),
        )
    }
}

impl std::ops::Add for Work {
    type Output = PartialCumulativeWork;

    fn add(self, rhs: Work) -> PartialCumulativeWork {
        PartialCumulativeWork::from(self) + rhs
    }
}

/// Partial work used to track relative work in non-finalized chains
///
/// # Consensus
///
/// Use to choose the best chain with the most work.
///
/// Since it is only relative values that matter, Zebra uses the partial work from a shared
/// fork root block to find the best chain.
///
/// See [`Work`] for details.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
pub struct PartialCumulativeWork(u128);

impl PartialCumulativeWork {
    /// Returns a value representing no work.
    pub fn zero() -> Self {
        Self(0)
    }

    /// Return the inner `u128` value.
    pub fn as_u128(self) -> u128 {
        self.0
    }

    /// Returns a floating-point work multiplier that can be used for display.
    /// The returned value is the work as a multiple of the target difficulty limit for `network`.
    pub fn difficulty_multiplier_for_display(&self, network: Network) -> f64 {
        // This calculation is similar to the `getdifficulty` RPC, see that code for details.

        let pow_limit = network
            .target_difficulty_limit()
            .to_compact()
            .to_work()
            .expect("target difficult limit is valid work");

        // Convert to u128 then f64.
        let pow_limit = pow_limit.as_u128() as f64;
        let work = self.as_u128() as f64;

        work / pow_limit
    }

    /// Returns floating-point work bits that can be used for display.
    /// The returned value is the number of hash bits represented by the work.
    pub fn difficulty_bits_for_display(&self) -> f64 {
        // This calculation is similar to `zcashd`'s bits display in its logs.

        // Convert to u128 then f64.
        let work = self.as_u128() as f64;

        work.log2()
    }
}

/// Network methods related to Difficulty
pub trait ParameterDifficulty {
    /// Returns the easiest target difficulty allowed on `network`.
    ///
    /// # Consensus
    ///
    /// See `PoWLimit` in the Zcash specification:
    /// <https://zips.z.cash/protocol/protocol.pdf#constants>
    fn target_difficulty_limit(&self) -> ExpandedDifficulty;
}

impl ParameterDifficulty for Network {
    /// Returns the easiest target difficulty allowed on `network`.
    /// See [`ParameterDifficulty::target_difficulty_limit`]
    fn target_difficulty_limit(&self) -> ExpandedDifficulty {
        let limit: U256 = match self {
            // Mainnet PoWLimit is defined as `2^243 - 1` on page 73 of the protocol specification:
            // <https://zips.z.cash/protocol/protocol.pdf>
            Network::Mainnet => (U256::one() << 243) - 1,
            // 2^251 - 1 for the default testnet, see `testnet::ParametersBuilder::default`()
            Network::Testnet(params) => return params.target_difficulty_limit(),
        };

        // `zcashd` converts the PoWLimit into a compact representation before
        // using it to perform difficulty filter checks.
        //
        // The Zcash specification converts to compact for the default difficulty
        // filter, but not for testnet minimum difficulty blocks. (ZIP 205 and
        // ZIP 208 don't specify this conversion either.) See #1277 for details.
        ExpandedDifficulty(limit)
            .to_compact()
            .to_expanded()
            .expect("difficulty limits are valid expanded values")
    }
}

impl From<Work> for PartialCumulativeWork {
    fn from(work: Work) -> Self {
        PartialCumulativeWork(work.0)
    }
}

impl std::ops::Add<Work> for PartialCumulativeWork {
    type Output = PartialCumulativeWork;

    fn add(self, rhs: Work) -> Self::Output {
        let result = self
            .0
            .checked_add(rhs.0)
            .expect("Work values do not overflow");

        PartialCumulativeWork(result)
    }
}

impl std::ops::AddAssign<Work> for PartialCumulativeWork {
    fn add_assign(&mut self, rhs: Work) {
        *self = *self + rhs;
    }
}

impl std::ops::Sub<Work> for PartialCumulativeWork {
    type Output = PartialCumulativeWork;

    fn sub(self, rhs: Work) -> Self::Output {
        let result = self.0
            .checked_sub(rhs.0)
            .expect("PartialCumulativeWork values do not underflow: all subtracted Work values must have been previously added to the PartialCumulativeWork");

        PartialCumulativeWork(result)
    }
}

impl std::ops::SubAssign<Work> for PartialCumulativeWork {
    fn sub_assign(&mut self, rhs: Work) {
        *self = *self - rhs;
    }
}