1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! ZEC amount formatting.
//!
//! The `f64` values returned by this type should not be used in consensus-critical code.
//! The values themselves are accurate, but any calculations using them could be lossy.

use std::{
    fmt,
    hash::{Hash, Hasher},
    ops,
    str::FromStr,
};

use zebra_chain::amount::{self, Amount, Constraint, COIN};

use zebra_node_services::BoxError;

// Doc links only
#[allow(unused_imports)]
use zebra_chain::amount::MAX_MONEY;

/// The maximum precision of a zatoshi in ZEC.
/// Also used as the default decimal precision for ZEC formatting.
///
/// This is the same as the `getblocksubsidy` RPC in `zcashd`:
/// <https://github.com/zcash/zcash/blob/f6a4f68115ea4c58d55c8538579d0877ba9c8f79/src/rpc/server.cpp#L134>
pub const MAX_ZEC_FORMAT_PRECISION: usize = 8;

/// A wrapper type that formats [`Amount`]s as ZEC, using double-precision floating point.
///
/// This formatting is accurate to the nearest zatoshi, as long as the number of floating-point
/// calculations is very small. This is because [`MAX_MONEY`] uses 51 bits, but [`f64`] has
/// [53 bits of precision](f64::MANTISSA_DIGITS).
///
/// Rust uses [`roundTiesToEven`](f32), which can lose one bit of precision per calculation
/// in the worst case. (Assuming the platform implements it correctly.)
///
/// Unlike `zcashd`, Zebra doesn't have control over its JSON number precision,
/// because it uses `serde_json`'s formatter. But `zcashd` uses a fixed-point calculation:
/// <https://github.com/zcash/zcash/blob/f6a4f68115ea4c58d55c8538579d0877ba9c8f79/src/rpc/server.cpp#L134>
#[derive(Clone, Copy, serde::Serialize, serde::Deserialize, Default)]
#[serde(try_from = "f64")]
#[serde(into = "f64")]
#[serde(bound = "C: Constraint + Clone")]
pub struct Zec<C: Constraint>(Amount<C>);

impl<C: Constraint> Zec<C> {
    /// Returns the `f64` ZEC value for the inner amount.
    ///
    /// The returned value should not be used for consensus-critical calculations,
    /// because it is lossy.
    pub fn lossy_zec(&self) -> f64 {
        let zats = self.zatoshis();
        // These conversions are exact, because f64 has 53 bits of precision,
        // MAX_MONEY has <51, and COIN has <27, so we have 2 extra bits of precision.
        let zats = zats as f64;
        let coin = COIN as f64;

        // After this calculation, we might have lost one bit of precision,
        // leaving us with only 1 extra bit.
        zats / coin
    }

    /// Converts a `f64` ZEC value to a [`Zec`] amount.
    ///
    /// This method should not be used for consensus-critical calculations, because it is lossy.
    pub fn from_lossy_zec(lossy_zec: f64) -> Result<Self, BoxError> {
        // This conversion is exact, because f64 has 53 bits of precision, but COIN has <27
        let coin = COIN as f64;

        // After this calculation, we might have lost one bit of precision
        let zats = lossy_zec * coin;

        if zats != zats.trunc() {
            return Err(
                "loss of precision parsing ZEC value: floating point had fractional zatoshis"
                    .into(),
            );
        }

        // We know this conversion is exact, because we just checked.
        let zats = zats as i64;
        let zats = Amount::try_from(zats)?;

        Ok(Self(zats))
    }
}

// These conversions are lossy, so they should not be used in consensus-critical code
impl<C: Constraint> From<Zec<C>> for f64 {
    fn from(zec: Zec<C>) -> f64 {
        zec.lossy_zec()
    }
}

impl<C: Constraint> TryFrom<f64> for Zec<C> {
    type Error = BoxError;

    fn try_from(value: f64) -> Result<Self, Self::Error> {
        Self::from_lossy_zec(value)
    }
}

// This formatter should not be used for consensus-critical outputs.
impl<C: Constraint> fmt::Display for Zec<C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let zec = self.lossy_zec();

        // Try to format like `zcashd` by default
        let decimals = f.precision().unwrap_or(MAX_ZEC_FORMAT_PRECISION);
        let string = format!("{zec:.decimals$}");
        f.pad_integral(zec >= 0.0, "", &string)
    }
}

// This parser should not be used for consensus-critical inputs.
impl<C: Constraint> FromStr for Zec<C> {
    type Err = BoxError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let lossy_zec: f64 = s.parse()?;

        Self::from_lossy_zec(lossy_zec)
    }
}

impl<C: Constraint> std::fmt::Debug for Zec<C> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct(&format!("Zec<{}>", std::any::type_name::<C>()))
            .field("ZEC", &self.to_string())
            .field("zat", &self.0)
            .finish()
    }
}

impl<C: Constraint> ops::Deref for Zec<C> {
    type Target = Amount<C>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<C: Constraint> ops::DerefMut for Zec<C> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<C: Constraint> From<Amount<C>> for Zec<C> {
    fn from(amount: Amount<C>) -> Self {
        Self(amount)
    }
}

impl<C: Constraint> From<Zec<C>> for Amount<C> {
    fn from(zec: Zec<C>) -> Amount<C> {
        zec.0
    }
}

impl<C: Constraint> From<Zec<C>> for i64 {
    fn from(zec: Zec<C>) -> i64 {
        zec.0.into()
    }
}

impl<C: Constraint> TryFrom<i64> for Zec<C> {
    type Error = amount::Error;

    fn try_from(value: i64) -> Result<Self, Self::Error> {
        Ok(Self(Amount::try_from(value)?))
    }
}

impl<C: Constraint> Hash for Zec<C> {
    /// Zecs with the same value are equal, even if they have different constraints
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}

impl<C1: Constraint, C2: Constraint> PartialEq<Zec<C2>> for Zec<C1> {
    fn eq(&self, other: &Zec<C2>) -> bool {
        self.0.eq(&other.0)
    }
}

impl<C: Constraint> PartialEq<i64> for Zec<C> {
    fn eq(&self, other: &i64) -> bool {
        self.0.eq(other)
    }
}

impl<C: Constraint> PartialEq<Zec<C>> for i64 {
    fn eq(&self, other: &Zec<C>) -> bool {
        self.eq(&other.0)
    }
}

impl<C1: Constraint, C2: Constraint> PartialEq<Amount<C2>> for Zec<C1> {
    fn eq(&self, other: &Amount<C2>) -> bool {
        self.0.eq(other)
    }
}

impl<C1: Constraint, C2: Constraint> PartialEq<Zec<C2>> for Amount<C1> {
    fn eq(&self, other: &Zec<C2>) -> bool {
        self.eq(&other.0)
    }
}

impl<C: Constraint> Eq for Zec<C> {}