1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
//! Transaction identifiers for Zcash.
//!
//! Zcash has two different transaction identifiers, with different widths:
//! * [`struct@Hash`]: a 32-byte transaction ID, which uniquely identifies mined transactions
//! (transactions that have been committed to the blockchain in blocks), and
//! * [`WtxId`]: a 64-byte witnessed transaction ID, which uniquely identifies unmined transactions
//! (transactions that are sent by wallets or stored in node mempools).
//!
//! Transaction version 5 uses both these unique identifiers:
//! * [`struct@Hash`] uniquely identifies the effects of a v5 transaction (spends and outputs),
//! so it uniquely identifies the transaction's data after it has been mined into a block;
//! * [`WtxId`] uniquely identifies the effects and authorizing data of a v5 transaction
//! (signatures, proofs, and scripts), so it uniquely identifies the transaction's data
//! outside a block. (For example, transactions produced by Zcash wallets, or in node mempools.)
//!
//! Transaction versions 1-4 are uniquely identified by legacy [`struct@Hash`] transaction IDs,
//! whether they have been mined or not. So Zebra, and the Zcash network protocol,
//! don't use witnessed transaction IDs for them.
//!
//! There is no unique identifier that only covers the effects of a v1-4 transaction,
//! so their legacy IDs are malleable, if submitted with different authorizing data.
//! So the same spends and outputs can have a completely different [`struct@Hash`].
//!
//! Zebra's [`UnminedTxId`][1] and [`UnminedTx`][1] enums provide the correct
//! unique ID for unmined transactions. They can be used to handle transactions
//! regardless of version, and get the [`WtxId`] or [`struct@Hash`] when
//! required.
//!
//! [1]: crate::transaction::UnminedTx
use std::{fmt, sync::Arc};
#[cfg(any(test, feature = "proptest-impl"))]
use proptest_derive::Arbitrary;
use hex::{FromHex, ToHex};
use serde::{Deserialize, Serialize};
use crate::serialization::{
ReadZcashExt, SerializationError, WriteZcashExt, ZcashDeserialize, ZcashSerialize,
};
use super::{txid::TxIdBuilder, AuthDigest, Transaction};
/// A transaction ID, which uniquely identifies mined v5 transactions,
/// and all v1-v4 transactions.
///
/// Note: Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
///
/// "The transaction ID of a version 4 or earlier transaction is the SHA-256d hash
/// of the transaction encoding in the pre-v5 format described above.
///
/// The transaction ID of a version 5 transaction is as defined in [ZIP-244]."
/// [Spec: Transaction Identifiers]
///
/// [ZIP-244]: https://zips.z.cash/zip-0244
/// [Spec: Transaction Identifiers]: https://zips.z.cash/protocol/protocol.pdf#txnidentifiers
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize, Hash)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary))]
pub struct Hash(pub [u8; 32]);
impl From<Transaction> for Hash {
fn from(transaction: Transaction) -> Self {
// use the ref implementation, to avoid cloning the transaction
Hash::from(&transaction)
}
}
impl From<&Transaction> for Hash {
fn from(transaction: &Transaction) -> Self {
let hasher = TxIdBuilder::new(transaction);
hasher
.txid()
.expect("zcash_primitives and Zebra transaction formats must be compatible")
}
}
impl From<Arc<Transaction>> for Hash {
fn from(transaction: Arc<Transaction>) -> Self {
Hash::from(transaction.as_ref())
}
}
impl From<[u8; 32]> for Hash {
fn from(bytes: [u8; 32]) -> Self {
Self(bytes)
}
}
impl From<Hash> for [u8; 32] {
fn from(hash: Hash) -> Self {
hash.0
}
}
impl From<&Hash> for [u8; 32] {
fn from(hash: &Hash) -> Self {
(*hash).into()
}
}
impl Hash {
/// Return the hash bytes in big-endian byte-order suitable for printing out byte by byte.
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn bytes_in_display_order(&self) -> [u8; 32] {
let mut reversed_bytes = self.0;
reversed_bytes.reverse();
reversed_bytes
}
/// Convert bytes in big-endian byte-order into a [`transaction::Hash`](crate::transaction::Hash).
///
/// Zebra displays transaction and block hashes in big-endian byte-order,
/// following the u256 convention set by Bitcoin and zcashd.
pub fn from_bytes_in_display_order(bytes_in_display_order: &[u8; 32]) -> Hash {
let mut internal_byte_order = *bytes_in_display_order;
internal_byte_order.reverse();
Hash(internal_byte_order)
}
}
impl ToHex for &Hash {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex_upper()
}
}
impl ToHex for Hash {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex_upper()
}
}
impl FromHex for Hash {
type Error = <[u8; 32] as FromHex>::Error;
fn from_hex<T: AsRef<[u8]>>(hex: T) -> Result<Self, Self::Error> {
let mut hash = <[u8; 32]>::from_hex(hex)?;
hash.reverse();
Ok(hash.into())
}
}
impl fmt::Display for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&self.encode_hex::<String>())
}
}
impl fmt::Debug for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("transaction::Hash")
.field(&self.encode_hex::<String>())
.finish()
}
}
impl std::str::FromStr for Hash {
type Err = SerializationError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut bytes = [0; 32];
if hex::decode_to_slice(s, &mut bytes[..]).is_err() {
Err(SerializationError::Parse("hex decoding error"))
} else {
bytes.reverse();
Ok(Hash(bytes))
}
}
}
impl ZcashSerialize for Hash {
fn zcash_serialize<W: std::io::Write>(&self, mut writer: W) -> Result<(), std::io::Error> {
writer.write_32_bytes(&self.into())
}
}
impl ZcashDeserialize for Hash {
fn zcash_deserialize<R: std::io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Ok(reader.read_32_bytes()?.into())
}
}
/// A witnessed transaction ID, which uniquely identifies unmined v5 transactions.
///
/// Witnessed transaction IDs are not used for transaction versions 1-4.
///
/// "A v5 transaction also has a wtxid (used for example in the peer-to-peer protocol)
/// as defined in [ZIP-239]."
/// [Spec: Transaction Identifiers]
///
/// [ZIP-239]: https://zips.z.cash/zip-0239
/// [Spec: Transaction Identifiers]: https://zips.z.cash/protocol/protocol.pdf#txnidentifiers
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(any(test, feature = "proptest-impl"), derive(Arbitrary))]
pub struct WtxId {
/// The non-malleable transaction ID for this transaction's effects.
pub id: Hash,
/// The authorizing data digest for this transactions signatures, proofs, and scripts.
pub auth_digest: AuthDigest,
}
impl WtxId {
/// Return this witnessed transaction ID as a serialized byte array.
pub fn as_bytes(&self) -> [u8; 64] {
<[u8; 64]>::from(self)
}
}
impl From<Transaction> for WtxId {
/// Computes the witnessed transaction ID for a transaction.
///
/// # Panics
///
/// If passed a pre-v5 transaction.
fn from(transaction: Transaction) -> Self {
// use the ref implementation, to avoid cloning the transaction
WtxId::from(&transaction)
}
}
impl From<&Transaction> for WtxId {
/// Computes the witnessed transaction ID for a transaction.
///
/// # Panics
///
/// If passed a pre-v5 transaction.
fn from(transaction: &Transaction) -> Self {
Self {
id: transaction.into(),
auth_digest: transaction.into(),
}
}
}
impl From<Arc<Transaction>> for WtxId {
/// Computes the witnessed transaction ID for a transaction.
///
/// # Panics
///
/// If passed a pre-v5 transaction.
fn from(transaction: Arc<Transaction>) -> Self {
transaction.as_ref().into()
}
}
impl From<[u8; 64]> for WtxId {
fn from(bytes: [u8; 64]) -> Self {
let id: [u8; 32] = bytes[0..32].try_into().expect("length is 64");
let auth_digest: [u8; 32] = bytes[32..64].try_into().expect("length is 64");
Self {
id: id.into(),
auth_digest: auth_digest.into(),
}
}
}
impl From<WtxId> for [u8; 64] {
fn from(wtx_id: WtxId) -> Self {
let mut bytes = [0; 64];
let (id, auth_digest) = bytes.split_at_mut(32);
id.copy_from_slice(&wtx_id.id.0);
auth_digest.copy_from_slice(&wtx_id.auth_digest.0);
bytes
}
}
impl From<&WtxId> for [u8; 64] {
fn from(wtx_id: &WtxId) -> Self {
(*wtx_id).into()
}
}
impl TryFrom<&[u8]> for WtxId {
type Error = SerializationError;
fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
let bytes: [u8; 64] = bytes.try_into()?;
Ok(bytes.into())
}
}
impl TryFrom<Vec<u8>> for WtxId {
type Error = SerializationError;
fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
bytes.as_slice().try_into()
}
}
impl TryFrom<&Vec<u8>> for WtxId {
type Error = SerializationError;
fn try_from(bytes: &Vec<u8>) -> Result<Self, Self::Error> {
bytes.clone().try_into()
}
}
impl fmt::Display for WtxId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&self.id.to_string())?;
f.write_str(&self.auth_digest.to_string())
}
}
impl std::str::FromStr for WtxId {
type Err = SerializationError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
// we need to split using bytes,
// because str::split_at panics if it splits a UTF-8 codepoint
let s = s.as_bytes();
if s.len() == 128 {
let (id, auth_digest) = s.split_at(64);
let id = std::str::from_utf8(id)?;
let auth_digest = std::str::from_utf8(auth_digest)?;
Ok(Self {
id: id.parse()?,
auth_digest: auth_digest.parse()?,
})
} else {
Err(SerializationError::Parse(
"wrong length for WtxId hex string",
))
}
}
}
impl ZcashSerialize for WtxId {
fn zcash_serialize<W: std::io::Write>(&self, mut writer: W) -> Result<(), std::io::Error> {
writer.write_64_bytes(&self.into())
}
}
impl ZcashDeserialize for WtxId {
fn zcash_deserialize<R: std::io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Ok(reader.read_64_bytes()?.into())
}
}