zebra_chain/sapling/tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
//! Note Commitment Trees.
//!
//! A note commitment tree is an incremental Merkle tree of fixed depth
//! used to store note commitments that JoinSplit transfers or Spend
//! transfers produce. Just as the unspent transaction output set (UTXO
//! set) used in Bitcoin, it is used to express the existence of value and
//! the capability to spend it. However, unlike the UTXO set, it is not
//! the job of this tree to protect against double-spending, as it is
//! append-only.
//!
//! A root of a note commitment tree is associated with each treestate.
use std::{
default::Default,
fmt,
hash::{Hash, Hasher},
io,
};
use bitvec::prelude::*;
use bridgetree::NonEmptyFrontier;
use hex::ToHex;
use incrementalmerkletree::{frontier::Frontier, Hashable};
use lazy_static::lazy_static;
use thiserror::Error;
use zcash_primitives::merkle_tree::HashSer;
use super::commitment::pedersen_hashes::pedersen_hash;
use crate::{
serialization::{
serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
},
subtree::{NoteCommitmentSubtreeIndex, TRACKED_SUBTREE_HEIGHT},
};
pub mod legacy;
use legacy::LegacyNoteCommitmentTree;
/// The type that is used to update the note commitment tree.
///
/// Unfortunately, this is not the same as `sapling::NoteCommitment`.
pub type NoteCommitmentUpdate = jubjub::Fq;
pub(super) const MERKLE_DEPTH: u8 = 32;
/// MerkleCRH^Sapling Hash Function
///
/// Used to hash incremental Merkle tree hash values for Sapling.
///
/// MerkleCRH^Sapling(layer, left, right) := PedersenHash("Zcash_PH", l || left || right)
/// where l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer) and
/// left, right, and the output are all technically 255 bits (l_MerkleSapling), not 256.
///
/// <https://zips.z.cash/protocol/protocol.pdf#merklecrh>
fn merkle_crh_sapling(layer: u8, left: [u8; 32], right: [u8; 32]) -> [u8; 32] {
let mut s = bitvec![u8, Lsb0;];
// Prefix: l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer)
let l = MERKLE_DEPTH - 1 - layer;
s.extend_from_bitslice(&BitSlice::<_, Lsb0>::from_element(&l)[0..6]);
s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(left)[0..255]);
s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(right)[0..255]);
pedersen_hash(*b"Zcash_PH", &s).to_bytes()
}
lazy_static! {
/// List of "empty" Sapling note commitment nodes, one for each layer.
///
/// The list is indexed by the layer number (0: root; MERKLE_DEPTH: leaf).
///
/// <https://zips.z.cash/protocol/protocol.pdf#constants>
pub(super) static ref EMPTY_ROOTS: Vec<[u8; 32]> = {
// The empty leaf node. This is layer 32.
let mut v = vec![NoteCommitmentTree::uncommitted()];
// Starting with layer 31 (the first internal layer, after the leaves),
// generate the empty roots up to layer 0, the root.
for layer in (0..MERKLE_DEPTH).rev() {
// The vector is generated from the end, pushing new nodes to its beginning.
// For this reason, the layer below is v[0].
let next = merkle_crh_sapling(layer, v[0], v[0]);
v.insert(0, next);
}
v
};
}
/// Sapling note commitment tree root node hash.
///
/// The root hash in LEBS2OSP256(rt) encoding of the Sapling note
/// commitment tree corresponding to the final Sapling treestate of
/// this block. A root of a note commitment tree is associated with
/// each treestate.
#[derive(Clone, Copy, Default, Eq, Serialize, Deserialize)]
pub struct Root(#[serde(with = "serde_helpers::Fq")] pub(crate) jubjub::Base);
impl fmt::Debug for Root {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Root")
.field(&hex::encode(self.0.to_bytes()))
.finish()
}
}
impl From<Root> for [u8; 32] {
fn from(root: Root) -> Self {
root.0.to_bytes()
}
}
impl From<&Root> for [u8; 32] {
fn from(root: &Root) -> Self {
(*root).into()
}
}
impl PartialEq for Root {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl Hash for Root {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.to_bytes().hash(state)
}
}
impl TryFrom<[u8; 32]> for Root {
type Error = SerializationError;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
let possible_point = jubjub::Base::from_bytes(&bytes);
if possible_point.is_some().into() {
Ok(Self(possible_point.unwrap()))
} else {
Err(SerializationError::Parse(
"Invalid jubjub::Base value for Sapling note commitment tree root",
))
}
}
}
impl ToHex for &Root {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
<[u8; 32]>::from(*self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
<[u8; 32]>::from(*self).encode_hex_upper()
}
}
impl ToHex for Root {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex_upper()
}
}
impl ZcashSerialize for Root {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&<[u8; 32]>::from(*self)[..])?;
Ok(())
}
}
impl ZcashDeserialize for Root {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Self::try_from(reader.read_32_bytes()?)
}
}
/// A node of the Sapling Incremental Note Commitment Tree.
///
/// Note that it's handled as a byte buffer and not a point coordinate (jubjub::Fq)
/// because that's how the spec handles the MerkleCRH^Sapling function inputs and outputs.
#[derive(Copy, Clone, Eq, PartialEq, Default)]
pub struct Node([u8; 32]);
impl AsRef<[u8; 32]> for Node {
fn as_ref(&self) -> &[u8; 32] {
&self.0
}
}
impl fmt::Display for Node {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&self.encode_hex::<String>())
}
}
impl fmt::Debug for Node {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("sapling::Node")
.field(&self.encode_hex::<String>())
.finish()
}
}
impl Node {
/// Return the node bytes in little-endian byte order suitable for printing out byte by byte.
///
/// `zcashd`'s `z_getsubtreesbyindex` does not reverse the byte order of subtree roots.
pub fn bytes_in_display_order(&self) -> [u8; 32] {
self.0
}
}
impl ToHex for &Node {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
self.bytes_in_display_order().encode_hex_upper()
}
}
impl ToHex for Node {
fn encode_hex<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex()
}
fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
(&self).encode_hex_upper()
}
}
/// Required to serialize [`NoteCommitmentTree`]s in a format matching `zcashd`.
///
/// Zebra stores Sapling note commitment trees as [`Frontier`]s while the
/// [`z_gettreestate`][1] RPC requires [`CommitmentTree`][2]s. Implementing
/// [`incrementalmerkletree::Hashable`] for [`Node`]s allows the conversion.
///
/// [1]: https://zcash.github.io/rpc/z_gettreestate.html
/// [2]: incrementalmerkletree::frontier::CommitmentTree
impl HashSer for Node {
fn read<R: io::Read>(mut reader: R) -> io::Result<Self> {
let mut node = [0u8; 32];
reader.read_exact(&mut node)?;
Ok(Self(node))
}
fn write<W: io::Write>(&self, mut writer: W) -> io::Result<()> {
writer.write_all(self.0.as_ref())
}
}
impl Hashable for Node {
fn empty_leaf() -> Self {
Self(NoteCommitmentTree::uncommitted())
}
/// Combine two nodes to generate a new node in the given level.
/// Level 0 is the layer above the leaves (layer 31).
/// Level 31 is the root (layer 0).
fn combine(level: incrementalmerkletree::Level, a: &Self, b: &Self) -> Self {
let layer = MERKLE_DEPTH - 1 - u8::from(level);
Self(merkle_crh_sapling(layer, a.0, b.0))
}
/// Return the node for the level below the given level. (A quirk of the API)
fn empty_root(level: incrementalmerkletree::Level) -> Self {
let layer_below = usize::from(MERKLE_DEPTH) - usize::from(level);
Self(EMPTY_ROOTS[layer_below])
}
}
impl From<jubjub::Fq> for Node {
fn from(x: jubjub::Fq) -> Self {
Node(x.into())
}
}
impl TryFrom<&[u8]> for Node {
type Error = &'static str;
fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
Option::<jubjub::Fq>::from(jubjub::Fq::from_bytes(
bytes.try_into().map_err(|_| "wrong byte slice len")?,
))
.map(Node::from)
.ok_or("invalid jubjub field element")
}
}
impl serde::Serialize for Node {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
self.0.serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for Node {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let bytes = <[u8; 32]>::deserialize(deserializer)?;
Option::<jubjub::Fq>::from(jubjub::Fq::from_bytes(&bytes))
.map(Node::from)
.ok_or_else(|| serde::de::Error::custom("invalid JubJub field element"))
}
}
#[derive(Error, Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[allow(missing_docs)]
pub enum NoteCommitmentTreeError {
#[error("The note commitment tree is full")]
FullTree,
}
/// Sapling Incremental Note Commitment Tree.
///
/// Note that the default value of the [`Root`] type is `[0, 0, 0, 0]`. However, this value differs
/// from the default value of the root of the default tree which is the hash of the root's child
/// nodes. The default tree is the empty tree which has all leaves empty.
#[derive(Debug, Serialize, Deserialize)]
#[serde(into = "LegacyNoteCommitmentTree")]
#[serde(from = "LegacyNoteCommitmentTree")]
pub struct NoteCommitmentTree {
/// The tree represented as a [`Frontier`].
///
/// A Frontier is a subset of the tree that allows to fully specify it.
/// It consists of nodes along the rightmost (newer) branch of the tree that
/// has non-empty nodes. Upper (near root) empty nodes of the branch are not
/// stored.
///
/// # Consensus
///
/// > [Sapling onward] A block MUST NOT add Sapling note commitments that
/// > would result in the Sapling note commitment tree exceeding its capacity
/// > of 2^(MerkleDepth^Sapling) leaf nodes.
///
/// <https://zips.z.cash/protocol/protocol.pdf#merkletree>
///
/// Note: MerkleDepth^Sapling = MERKLE_DEPTH = 32.
inner: Frontier<Node, MERKLE_DEPTH>,
/// A cached root of the tree.
///
/// Every time the root is computed by [`Self::root`] it is cached here, and
/// the cached value will be returned by [`Self::root`] until the tree is
/// changed by [`Self::append`]. This greatly increases performance because
/// it avoids recomputing the root when the tree does not change between
/// blocks. In the finalized state, the tree is read from disk for every
/// block processed, which would also require recomputing the root even if
/// it has not changed (note that the cached root is serialized with the
/// tree). This is particularly important since we decided to instantiate
/// the trees from the genesis block, for simplicity.
///
/// We use a [`RwLock`](std::sync::RwLock) for this cache, because it is only written once per
/// tree update. Each tree has its own cached root, a new lock is created
/// for each clone.
cached_root: std::sync::RwLock<Option<Root>>,
}
impl NoteCommitmentTree {
/// Adds a note commitment u-coordinate to the tree.
///
/// The leaves of the tree are actually a base field element, the
/// u-coordinate of the commitment, the data that is actually stored on the
/// chain and input into the proof.
///
/// Returns an error if the tree is full.
#[allow(clippy::unwrap_in_result)]
pub fn append(&mut self, cm_u: NoteCommitmentUpdate) -> Result<(), NoteCommitmentTreeError> {
if self.inner.append(cm_u.into()) {
// Invalidate cached root
let cached_root = self
.cached_root
.get_mut()
.expect("a thread that previously held exclusive lock access panicked");
*cached_root = None;
Ok(())
} else {
Err(NoteCommitmentTreeError::FullTree)
}
}
/// Returns frontier of non-empty tree, or None.
fn frontier(&self) -> Option<&NonEmptyFrontier<Node>> {
self.inner.value()
}
/// Returns the position of the most recently appended leaf in the tree.
///
/// This method is used for debugging, use `incrementalmerkletree::Address` for tree operations.
pub fn position(&self) -> Option<u64> {
let Some(tree) = self.frontier() else {
// An empty tree doesn't have a previous leaf.
return None;
};
Some(tree.position().into())
}
/// Returns true if this tree has at least one new subtree, when compared with `prev_tree`.
pub fn contains_new_subtree(&self, prev_tree: &Self) -> bool {
// Use -1 for the index of the subtree with no notes, so the comparisons are valid.
let index = self.subtree_index().map_or(-1, |index| i32::from(index.0));
let prev_index = prev_tree
.subtree_index()
.map_or(-1, |index| i32::from(index.0));
// This calculation can't overflow, because we're using i32 for u16 values.
let index_difference = index - prev_index;
// There are 4 cases we need to handle:
// - lower index: never a new subtree
// - equal index: sometimes a new subtree
// - next index: sometimes a new subtree
// - greater than the next index: always a new subtree
//
// To simplify the function, we deal with the simple cases first.
// There can't be any new subtrees if the current index is strictly lower.
if index < prev_index {
return false;
}
// There is at least one new subtree, even if there is a spurious index difference.
if index_difference > 1 {
return true;
}
// If the indexes are equal, there can only be a new subtree if `self` just completed it.
if index == prev_index {
return self.is_complete_subtree();
}
// If `self` is the next index, check if the last note completed a subtree.
if self.is_complete_subtree() {
return true;
}
// Then check for spurious index differences.
//
// There is one new subtree somewhere in the trees. It is either:
// - a new subtree at the end of the previous tree, or
// - a new subtree in this tree (but not at the end).
//
// Spurious index differences happen because the subtree index only increases when the
// first note is added to the new subtree. So we need to exclude subtrees completed by the
// last note commitment in the previous tree.
//
// We also need to exclude empty previous subtrees, because the index changes to zero when
// the first note is added, but a subtree wasn't completed.
if prev_tree.is_complete_subtree() || prev_index == -1 {
return false;
}
// A new subtree was completed by a note commitment that isn't in the previous tree.
true
}
/// Returns true if the most recently appended leaf completes the subtree
pub fn is_complete_subtree(&self) -> bool {
let Some(tree) = self.frontier() else {
// An empty tree can't be a complete subtree.
return false;
};
tree.position()
.is_complete_subtree(TRACKED_SUBTREE_HEIGHT.into())
}
/// Returns the subtree index at [`TRACKED_SUBTREE_HEIGHT`].
/// This is the number of complete or incomplete subtrees that are currently in the tree.
/// Returns `None` if the tree is empty.
#[allow(clippy::unwrap_in_result)]
pub fn subtree_index(&self) -> Option<NoteCommitmentSubtreeIndex> {
let tree = self.frontier()?;
let index = incrementalmerkletree::Address::above_position(
TRACKED_SUBTREE_HEIGHT.into(),
tree.position(),
)
.index()
.try_into()
.expect("fits in u16");
Some(index)
}
/// Returns the number of leaf nodes required to complete the subtree at
/// [`TRACKED_SUBTREE_HEIGHT`].
///
/// Returns `2^TRACKED_SUBTREE_HEIGHT` if the tree is empty.
#[allow(clippy::unwrap_in_result)]
pub fn remaining_subtree_leaf_nodes(&self) -> usize {
let remaining = match self.frontier() {
// If the subtree has at least one leaf node, the remaining number of nodes can be
// calculated using the maximum subtree position and the current position.
Some(tree) => {
let max_position = incrementalmerkletree::Address::above_position(
TRACKED_SUBTREE_HEIGHT.into(),
tree.position(),
)
.max_position();
max_position - tree.position().into()
}
// If the subtree has no nodes, the remaining number of nodes is the number of nodes in
// a subtree.
None => {
let subtree_address = incrementalmerkletree::Address::above_position(
TRACKED_SUBTREE_HEIGHT.into(),
// This position is guaranteed to be in the first subtree.
0.into(),
);
assert_eq!(
subtree_address.position_range_start(),
0.into(),
"address is not in the first subtree"
);
subtree_address.position_range_end()
}
};
u64::from(remaining).try_into().expect("fits in usize")
}
/// Returns subtree index and root if the most recently appended leaf completes the subtree
pub fn completed_subtree_index_and_root(&self) -> Option<(NoteCommitmentSubtreeIndex, Node)> {
if !self.is_complete_subtree() {
return None;
}
let index = self.subtree_index()?;
let root = self.frontier()?.root(Some(TRACKED_SUBTREE_HEIGHT.into()));
Some((index, root))
}
/// Returns the current root of the tree, used as an anchor in Sapling
/// shielded transactions.
pub fn root(&self) -> Root {
if let Some(root) = self.cached_root() {
// Return cached root.
return root;
}
// Get exclusive access, compute the root, and cache it.
let mut write_root = self
.cached_root
.write()
.expect("a thread that previously held exclusive lock access panicked");
let read_root = write_root.as_ref().cloned();
match read_root {
// Another thread got write access first, return cached root.
Some(root) => root,
None => {
// Compute root and cache it.
let root = self.recalculate_root();
*write_root = Some(root);
root
}
}
}
/// Returns the current root of the tree, if it has already been cached.
#[allow(clippy::unwrap_in_result)]
pub fn cached_root(&self) -> Option<Root> {
*self
.cached_root
.read()
.expect("a thread that previously held exclusive lock access panicked")
}
/// Calculates and returns the current root of the tree, ignoring any caching.
pub fn recalculate_root(&self) -> Root {
Root::try_from(self.inner.root().0).unwrap()
}
/// Gets the Jubjub-based Pedersen hash of root node of this merkle tree of
/// note commitments.
pub fn hash(&self) -> [u8; 32] {
self.root().into()
}
/// An as-yet unused Sapling note commitment tree leaf node.
///
/// Distinct for Sapling, a distinguished hash value of:
///
/// Uncommitted^Sapling = I2LEBSP_l_MerkleSapling(1)
pub fn uncommitted() -> [u8; 32] {
jubjub::Fq::one().to_bytes()
}
/// Counts of note commitments added to the tree.
///
/// For Sapling, the tree is capped at 2^32.
pub fn count(&self) -> u64 {
self.inner
.value()
.map_or(0, |x| u64::from(x.position()) + 1)
}
/// Checks if the tree roots and inner data structures of `self` and `other` are equal.
///
/// # Panics
///
/// If they aren't equal, with a message explaining the differences.
///
/// Only for use in tests.
#[cfg(any(test, feature = "proptest-impl"))]
pub fn assert_frontier_eq(&self, other: &Self) {
// It's technically ok for the cached root not to be preserved,
// but it can result in expensive cryptographic operations,
// so we fail the tests if it happens.
assert_eq!(self.cached_root(), other.cached_root());
// Check the data in the internal data structure
assert_eq!(self.inner, other.inner);
// Check the RPC serialization format (not the same as the Zebra database format)
assert_eq!(self.to_rpc_bytes(), other.to_rpc_bytes());
}
/// Serializes [`Self`] to a format matching `zcashd`'s RPCs.
pub fn to_rpc_bytes(&self) -> Vec<u8> {
// Convert the tree from [`Frontier`](bridgetree::Frontier) to
// [`CommitmentTree`](merkle_tree::CommitmentTree).
let tree = incrementalmerkletree::frontier::CommitmentTree::from_frontier(&self.inner);
let mut rpc_bytes = vec![];
zcash_primitives::merkle_tree::write_commitment_tree(&tree, &mut rpc_bytes)
.expect("serializable tree");
rpc_bytes
}
}
impl Clone for NoteCommitmentTree {
/// Clones the inner tree, and creates a new [`RwLock`](std::sync::RwLock)
/// with the cloned root data.
fn clone(&self) -> Self {
let cached_root = self.cached_root();
Self {
inner: self.inner.clone(),
cached_root: std::sync::RwLock::new(cached_root),
}
}
}
impl Default for NoteCommitmentTree {
fn default() -> Self {
Self {
inner: bridgetree::Frontier::empty(),
cached_root: Default::default(),
}
}
}
impl Eq for NoteCommitmentTree {}
impl PartialEq for NoteCommitmentTree {
fn eq(&self, other: &Self) -> bool {
if let (Some(root), Some(other_root)) = (self.cached_root(), other.cached_root()) {
// Use cached roots if available
root == other_root
} else {
// Avoid expensive root recalculations which use multiple cryptographic hashes
self.inner == other.inner
}
}
}
impl From<Vec<jubjub::Fq>> for NoteCommitmentTree {
/// Computes the tree from a whole bunch of note commitments at once.
fn from(values: Vec<jubjub::Fq>) -> Self {
let mut tree = Self::default();
if values.is_empty() {
return tree;
}
for cm_u in values {
let _ = tree.append(cm_u);
}
tree
}
}