zebra_chain/sapling/tree.rs
1//! Note Commitment Trees.
2//!
3//! A note commitment tree is an incremental Merkle tree of fixed depth
4//! used to store note commitments that JoinSplit transfers or Spend
5//! transfers produce. Just as the unspent transaction output set (UTXO
6//! set) used in Bitcoin, it is used to express the existence of value and
7//! the capability to spend it. However, unlike the UTXO set, it is not
8//! the job of this tree to protect against double-spending, as it is
9//! append-only.
10//!
11//! A root of a note commitment tree is associated with each treestate.
12
13use std::{
14 default::Default,
15 fmt,
16 hash::{Hash, Hasher},
17 io,
18};
19
20use bitvec::prelude::*;
21use hex::ToHex;
22use incrementalmerkletree::{
23 frontier::{Frontier, NonEmptyFrontier},
24 Hashable,
25};
26
27use lazy_static::lazy_static;
28use thiserror::Error;
29use zcash_primitives::merkle_tree::HashSer;
30
31use super::commitment::pedersen_hashes::pedersen_hash;
32
33use crate::{
34 serialization::{
35 serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
36 },
37 subtree::{NoteCommitmentSubtreeIndex, TRACKED_SUBTREE_HEIGHT},
38};
39
40pub mod legacy;
41use legacy::LegacyNoteCommitmentTree;
42
43/// The type that is used to update the note commitment tree.
44///
45/// Unfortunately, this is not the same as `sapling::NoteCommitment`.
46pub type NoteCommitmentUpdate = jubjub::Fq;
47
48pub(super) const MERKLE_DEPTH: u8 = 32;
49
50/// MerkleCRH^Sapling Hash Function
51///
52/// Used to hash incremental Merkle tree hash values for Sapling.
53///
54/// MerkleCRH^Sapling(layer, left, right) := PedersenHash("Zcash_PH", l || left || right)
55/// where l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer) and
56/// left, right, and the output are all technically 255 bits (l_MerkleSapling), not 256.
57///
58/// <https://zips.z.cash/protocol/protocol.pdf#merklecrh>
59fn merkle_crh_sapling(layer: u8, left: [u8; 32], right: [u8; 32]) -> [u8; 32] {
60 let mut s = bitvec![u8, Lsb0;];
61
62 // Prefix: l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer)
63 let l = MERKLE_DEPTH - 1 - layer;
64 s.extend_from_bitslice(&BitSlice::<_, Lsb0>::from_element(&l)[0..6]);
65 s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(left)[0..255]);
66 s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(right)[0..255]);
67
68 pedersen_hash(*b"Zcash_PH", &s).to_bytes()
69}
70
71lazy_static! {
72 /// List of "empty" Sapling note commitment nodes, one for each layer.
73 ///
74 /// The list is indexed by the layer number (0: root; MERKLE_DEPTH: leaf).
75 ///
76 /// <https://zips.z.cash/protocol/protocol.pdf#constants>
77 pub(super) static ref EMPTY_ROOTS: Vec<[u8; 32]> = {
78 // The empty leaf node. This is layer 32.
79 let mut v = vec![NoteCommitmentTree::uncommitted()];
80
81 // Starting with layer 31 (the first internal layer, after the leaves),
82 // generate the empty roots up to layer 0, the root.
83 for layer in (0..MERKLE_DEPTH).rev() {
84 // The vector is generated from the end, pushing new nodes to its beginning.
85 // For this reason, the layer below is v[0].
86 let next = merkle_crh_sapling(layer, v[0], v[0]);
87 v.insert(0, next);
88 }
89
90 v
91
92 };
93}
94
95/// Sapling note commitment tree root node hash.
96///
97/// The root hash in LEBS2OSP256(rt) encoding of the Sapling note
98/// commitment tree corresponding to the final Sapling treestate of
99/// this block. A root of a note commitment tree is associated with
100/// each treestate.
101#[derive(Clone, Copy, Default, Eq, Serialize, Deserialize)]
102pub struct Root(#[serde(with = "serde_helpers::Fq")] pub(crate) jubjub::Base);
103
104impl Root {
105 /// Return the node bytes in little-endian byte order as required
106 /// by RPCs such as `z_gettreestate`.
107 pub fn bytes_in_display_order(&self) -> [u8; 32] {
108 let mut root: [u8; 32] = self.into();
109 root.reverse();
110 root
111 }
112}
113
114impl fmt::Debug for Root {
115 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
116 f.debug_tuple("Root")
117 .field(&hex::encode(self.0.to_bytes()))
118 .finish()
119 }
120}
121
122impl From<Root> for [u8; 32] {
123 fn from(root: Root) -> Self {
124 root.0.to_bytes()
125 }
126}
127
128impl From<&Root> for [u8; 32] {
129 fn from(root: &Root) -> Self {
130 (*root).into()
131 }
132}
133
134impl PartialEq for Root {
135 fn eq(&self, other: &Self) -> bool {
136 self.0 == other.0
137 }
138}
139
140impl Hash for Root {
141 fn hash<H: Hasher>(&self, state: &mut H) {
142 self.0.to_bytes().hash(state)
143 }
144}
145
146impl TryFrom<[u8; 32]> for Root {
147 type Error = SerializationError;
148
149 fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
150 let possible_point = jubjub::Base::from_bytes(&bytes);
151
152 if possible_point.is_some().into() {
153 Ok(Self(possible_point.unwrap()))
154 } else {
155 Err(SerializationError::Parse(
156 "Invalid jubjub::Base value for Sapling note commitment tree root",
157 ))
158 }
159 }
160}
161
162impl ToHex for &Root {
163 fn encode_hex<T: FromIterator<char>>(&self) -> T {
164 <[u8; 32]>::from(*self).encode_hex()
165 }
166
167 fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
168 <[u8; 32]>::from(*self).encode_hex_upper()
169 }
170}
171
172impl ToHex for Root {
173 fn encode_hex<T: FromIterator<char>>(&self) -> T {
174 (&self).encode_hex()
175 }
176
177 fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
178 (&self).encode_hex_upper()
179 }
180}
181
182impl ZcashSerialize for Root {
183 fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
184 writer.write_all(&<[u8; 32]>::from(*self)[..])?;
185
186 Ok(())
187 }
188}
189
190impl ZcashDeserialize for Root {
191 fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
192 Self::try_from(reader.read_32_bytes()?)
193 }
194}
195
196/// A node of the Sapling Incremental Note Commitment Tree.
197///
198/// Note that it's handled as a byte buffer and not a point coordinate (jubjub::Fq)
199/// because that's how the spec handles the MerkleCRH^Sapling function inputs and outputs.
200#[derive(Copy, Clone, Eq, PartialEq, Default)]
201pub struct Node([u8; 32]);
202
203impl AsRef<[u8; 32]> for Node {
204 fn as_ref(&self) -> &[u8; 32] {
205 &self.0
206 }
207}
208
209impl fmt::Display for Node {
210 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
211 f.write_str(&self.encode_hex::<String>())
212 }
213}
214
215impl fmt::Debug for Node {
216 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
217 f.debug_tuple("sapling::Node")
218 .field(&self.encode_hex::<String>())
219 .finish()
220 }
221}
222
223impl Node {
224 /// Return the node bytes in little-endian byte order suitable for printing out byte by byte.
225 ///
226 /// `zcashd`'s `z_getsubtreesbyindex` does not reverse the byte order of subtree roots.
227 pub fn bytes_in_display_order(&self) -> [u8; 32] {
228 self.0
229 }
230}
231
232impl ToHex for &Node {
233 fn encode_hex<T: FromIterator<char>>(&self) -> T {
234 self.bytes_in_display_order().encode_hex()
235 }
236
237 fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
238 self.bytes_in_display_order().encode_hex_upper()
239 }
240}
241
242impl ToHex for Node {
243 fn encode_hex<T: FromIterator<char>>(&self) -> T {
244 (&self).encode_hex()
245 }
246
247 fn encode_hex_upper<T: FromIterator<char>>(&self) -> T {
248 (&self).encode_hex_upper()
249 }
250}
251
252/// Required to serialize [`NoteCommitmentTree`]s in a format matching `zcashd`.
253///
254/// Zebra stores Sapling note commitment trees as [`Frontier`]s while the
255/// [`z_gettreestate`][1] RPC requires [`CommitmentTree`][2]s. Implementing
256/// [`incrementalmerkletree::Hashable`] for [`Node`]s allows the conversion.
257///
258/// [1]: https://zcash.github.io/rpc/z_gettreestate.html
259/// [2]: incrementalmerkletree::frontier::CommitmentTree
260impl HashSer for Node {
261 fn read<R: io::Read>(mut reader: R) -> io::Result<Self> {
262 let mut node = [0u8; 32];
263 reader.read_exact(&mut node)?;
264 Ok(Self(node))
265 }
266
267 fn write<W: io::Write>(&self, mut writer: W) -> io::Result<()> {
268 writer.write_all(self.0.as_ref())
269 }
270}
271
272impl Hashable for Node {
273 fn empty_leaf() -> Self {
274 Self(NoteCommitmentTree::uncommitted())
275 }
276
277 /// Combine two nodes to generate a new node in the given level.
278 /// Level 0 is the layer above the leaves (layer 31).
279 /// Level 31 is the root (layer 0).
280 fn combine(level: incrementalmerkletree::Level, a: &Self, b: &Self) -> Self {
281 let layer = MERKLE_DEPTH - 1 - u8::from(level);
282 Self(merkle_crh_sapling(layer, a.0, b.0))
283 }
284
285 /// Return the node for the level below the given level. (A quirk of the API)
286 fn empty_root(level: incrementalmerkletree::Level) -> Self {
287 let layer_below = usize::from(MERKLE_DEPTH) - usize::from(level);
288 Self(EMPTY_ROOTS[layer_below])
289 }
290}
291
292impl From<jubjub::Fq> for Node {
293 fn from(x: jubjub::Fq) -> Self {
294 Node(x.into())
295 }
296}
297
298impl TryFrom<&[u8]> for Node {
299 type Error = &'static str;
300
301 fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
302 Option::<jubjub::Fq>::from(jubjub::Fq::from_bytes(
303 bytes.try_into().map_err(|_| "wrong byte slice len")?,
304 ))
305 .map(Node::from)
306 .ok_or("invalid jubjub field element")
307 }
308}
309
310impl serde::Serialize for Node {
311 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
312 where
313 S: serde::Serializer,
314 {
315 self.0.serialize(serializer)
316 }
317}
318
319impl<'de> serde::Deserialize<'de> for Node {
320 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
321 where
322 D: serde::Deserializer<'de>,
323 {
324 let bytes = <[u8; 32]>::deserialize(deserializer)?;
325 Option::<jubjub::Fq>::from(jubjub::Fq::from_bytes(&bytes))
326 .map(Node::from)
327 .ok_or_else(|| serde::de::Error::custom("invalid JubJub field element"))
328 }
329}
330
331#[derive(Error, Copy, Clone, Debug, Eq, PartialEq, Hash)]
332#[allow(missing_docs)]
333pub enum NoteCommitmentTreeError {
334 #[error("The note commitment tree is full")]
335 FullTree,
336}
337
338/// Sapling Incremental Note Commitment Tree.
339///
340/// Note that the default value of the [`Root`] type is `[0, 0, 0, 0]`. However, this value differs
341/// from the default value of the root of the default tree which is the hash of the root's child
342/// nodes. The default tree is the empty tree which has all leaves empty.
343#[derive(Debug, Serialize, Deserialize)]
344#[serde(into = "LegacyNoteCommitmentTree")]
345#[serde(from = "LegacyNoteCommitmentTree")]
346pub struct NoteCommitmentTree {
347 /// The tree represented as a [`Frontier`].
348 ///
349 /// A Frontier is a subset of the tree that allows to fully specify it.
350 /// It consists of nodes along the rightmost (newer) branch of the tree that
351 /// has non-empty nodes. Upper (near root) empty nodes of the branch are not
352 /// stored.
353 ///
354 /// # Consensus
355 ///
356 /// > [Sapling onward] A block MUST NOT add Sapling note commitments that
357 /// > would result in the Sapling note commitment tree exceeding its capacity
358 /// > of 2^(MerkleDepth^Sapling) leaf nodes.
359 ///
360 /// <https://zips.z.cash/protocol/protocol.pdf#merkletree>
361 ///
362 /// Note: MerkleDepth^Sapling = MERKLE_DEPTH = 32.
363 inner: Frontier<Node, MERKLE_DEPTH>,
364
365 /// A cached root of the tree.
366 ///
367 /// Every time the root is computed by [`Self::root`] it is cached here, and
368 /// the cached value will be returned by [`Self::root`] until the tree is
369 /// changed by [`Self::append`]. This greatly increases performance because
370 /// it avoids recomputing the root when the tree does not change between
371 /// blocks. In the finalized state, the tree is read from disk for every
372 /// block processed, which would also require recomputing the root even if
373 /// it has not changed (note that the cached root is serialized with the
374 /// tree). This is particularly important since we decided to instantiate
375 /// the trees from the genesis block, for simplicity.
376 ///
377 /// We use a [`RwLock`](std::sync::RwLock) for this cache, because it is only written once per
378 /// tree update. Each tree has its own cached root, a new lock is created
379 /// for each clone.
380 cached_root: std::sync::RwLock<Option<Root>>,
381}
382
383impl NoteCommitmentTree {
384 /// Adds a note commitment u-coordinate to the tree.
385 ///
386 /// The leaves of the tree are actually a base field element, the
387 /// u-coordinate of the commitment, the data that is actually stored on the
388 /// chain and input into the proof.
389 ///
390 /// Returns an error if the tree is full.
391 #[allow(clippy::unwrap_in_result)]
392 pub fn append(&mut self, cm_u: NoteCommitmentUpdate) -> Result<(), NoteCommitmentTreeError> {
393 if self.inner.append(cm_u.into()) {
394 // Invalidate cached root
395 let cached_root = self
396 .cached_root
397 .get_mut()
398 .expect("a thread that previously held exclusive lock access panicked");
399
400 *cached_root = None;
401
402 Ok(())
403 } else {
404 Err(NoteCommitmentTreeError::FullTree)
405 }
406 }
407
408 /// Returns frontier of non-empty tree, or None.
409 fn frontier(&self) -> Option<&NonEmptyFrontier<Node>> {
410 self.inner.value()
411 }
412
413 /// Returns the position of the most recently appended leaf in the tree.
414 ///
415 /// This method is used for debugging, use `incrementalmerkletree::Address` for tree operations.
416 pub fn position(&self) -> Option<u64> {
417 let Some(tree) = self.frontier() else {
418 // An empty tree doesn't have a previous leaf.
419 return None;
420 };
421
422 Some(tree.position().into())
423 }
424
425 /// Returns true if this tree has at least one new subtree, when compared with `prev_tree`.
426 pub fn contains_new_subtree(&self, prev_tree: &Self) -> bool {
427 // Use -1 for the index of the subtree with no notes, so the comparisons are valid.
428 let index = self.subtree_index().map_or(-1, |index| i32::from(index.0));
429 let prev_index = prev_tree
430 .subtree_index()
431 .map_or(-1, |index| i32::from(index.0));
432
433 // This calculation can't overflow, because we're using i32 for u16 values.
434 let index_difference = index - prev_index;
435
436 // There are 4 cases we need to handle:
437 // - lower index: never a new subtree
438 // - equal index: sometimes a new subtree
439 // - next index: sometimes a new subtree
440 // - greater than the next index: always a new subtree
441 //
442 // To simplify the function, we deal with the simple cases first.
443
444 // There can't be any new subtrees if the current index is strictly lower.
445 if index < prev_index {
446 return false;
447 }
448
449 // There is at least one new subtree, even if there is a spurious index difference.
450 if index_difference > 1 {
451 return true;
452 }
453
454 // If the indexes are equal, there can only be a new subtree if `self` just completed it.
455 if index == prev_index {
456 return self.is_complete_subtree();
457 }
458
459 // If `self` is the next index, check if the last note completed a subtree.
460 if self.is_complete_subtree() {
461 return true;
462 }
463
464 // Then check for spurious index differences.
465 //
466 // There is one new subtree somewhere in the trees. It is either:
467 // - a new subtree at the end of the previous tree, or
468 // - a new subtree in this tree (but not at the end).
469 //
470 // Spurious index differences happen because the subtree index only increases when the
471 // first note is added to the new subtree. So we need to exclude subtrees completed by the
472 // last note commitment in the previous tree.
473 //
474 // We also need to exclude empty previous subtrees, because the index changes to zero when
475 // the first note is added, but a subtree wasn't completed.
476 if prev_tree.is_complete_subtree() || prev_index == -1 {
477 return false;
478 }
479
480 // A new subtree was completed by a note commitment that isn't in the previous tree.
481 true
482 }
483
484 /// Returns true if the most recently appended leaf completes the subtree
485 pub fn is_complete_subtree(&self) -> bool {
486 let Some(tree) = self.frontier() else {
487 // An empty tree can't be a complete subtree.
488 return false;
489 };
490
491 tree.position()
492 .is_complete_subtree(TRACKED_SUBTREE_HEIGHT.into())
493 }
494
495 /// Returns the subtree index at [`TRACKED_SUBTREE_HEIGHT`].
496 /// This is the number of complete or incomplete subtrees that are currently in the tree.
497 /// Returns `None` if the tree is empty.
498 #[allow(clippy::unwrap_in_result)]
499 pub fn subtree_index(&self) -> Option<NoteCommitmentSubtreeIndex> {
500 let tree = self.frontier()?;
501
502 let index = incrementalmerkletree::Address::above_position(
503 TRACKED_SUBTREE_HEIGHT.into(),
504 tree.position(),
505 )
506 .index()
507 .try_into()
508 .expect("fits in u16");
509
510 Some(index)
511 }
512
513 /// Returns the number of leaf nodes required to complete the subtree at
514 /// [`TRACKED_SUBTREE_HEIGHT`].
515 ///
516 /// Returns `2^TRACKED_SUBTREE_HEIGHT` if the tree is empty.
517 #[allow(clippy::unwrap_in_result)]
518 pub fn remaining_subtree_leaf_nodes(&self) -> usize {
519 let remaining = match self.frontier() {
520 // If the subtree has at least one leaf node, the remaining number of nodes can be
521 // calculated using the maximum subtree position and the current position.
522 Some(tree) => {
523 let max_position = incrementalmerkletree::Address::above_position(
524 TRACKED_SUBTREE_HEIGHT.into(),
525 tree.position(),
526 )
527 .max_position();
528
529 max_position - tree.position().into()
530 }
531 // If the subtree has no nodes, the remaining number of nodes is the number of nodes in
532 // a subtree.
533 None => {
534 let subtree_address = incrementalmerkletree::Address::above_position(
535 TRACKED_SUBTREE_HEIGHT.into(),
536 // This position is guaranteed to be in the first subtree.
537 0.into(),
538 );
539
540 assert_eq!(
541 subtree_address.position_range_start(),
542 0.into(),
543 "address is not in the first subtree"
544 );
545
546 subtree_address.position_range_end()
547 }
548 };
549
550 u64::from(remaining).try_into().expect("fits in usize")
551 }
552
553 /// Returns subtree index and root if the most recently appended leaf completes the subtree
554 pub fn completed_subtree_index_and_root(&self) -> Option<(NoteCommitmentSubtreeIndex, Node)> {
555 if !self.is_complete_subtree() {
556 return None;
557 }
558
559 let index = self.subtree_index()?;
560 let root = self.frontier()?.root(Some(TRACKED_SUBTREE_HEIGHT.into()));
561
562 Some((index, root))
563 }
564
565 /// Returns the current root of the tree, used as an anchor in Sapling
566 /// shielded transactions.
567 pub fn root(&self) -> Root {
568 if let Some(root) = self.cached_root() {
569 // Return cached root.
570 return root;
571 }
572
573 // Get exclusive access, compute the root, and cache it.
574 let mut write_root = self
575 .cached_root
576 .write()
577 .expect("a thread that previously held exclusive lock access panicked");
578 let read_root = write_root.as_ref().cloned();
579 match read_root {
580 // Another thread got write access first, return cached root.
581 Some(root) => root,
582 None => {
583 // Compute root and cache it.
584 let root = self.recalculate_root();
585 *write_root = Some(root);
586 root
587 }
588 }
589 }
590
591 /// Returns the current root of the tree, if it has already been cached.
592 #[allow(clippy::unwrap_in_result)]
593 pub fn cached_root(&self) -> Option<Root> {
594 *self
595 .cached_root
596 .read()
597 .expect("a thread that previously held exclusive lock access panicked")
598 }
599
600 /// Calculates and returns the current root of the tree, ignoring any caching.
601 pub fn recalculate_root(&self) -> Root {
602 Root::try_from(self.inner.root().0).unwrap()
603 }
604
605 /// Gets the Jubjub-based Pedersen hash of root node of this merkle tree of
606 /// note commitments.
607 pub fn hash(&self) -> [u8; 32] {
608 self.root().into()
609 }
610
611 /// An as-yet unused Sapling note commitment tree leaf node.
612 ///
613 /// Distinct for Sapling, a distinguished hash value of:
614 ///
615 /// Uncommitted^Sapling = I2LEBSP_l_MerkleSapling(1)
616 pub fn uncommitted() -> [u8; 32] {
617 jubjub::Fq::one().to_bytes()
618 }
619
620 /// Counts of note commitments added to the tree.
621 ///
622 /// For Sapling, the tree is capped at 2^32.
623 pub fn count(&self) -> u64 {
624 self.inner
625 .value()
626 .map_or(0, |x| u64::from(x.position()) + 1)
627 }
628
629 /// Checks if the tree roots and inner data structures of `self` and `other` are equal.
630 ///
631 /// # Panics
632 ///
633 /// If they aren't equal, with a message explaining the differences.
634 ///
635 /// Only for use in tests.
636 #[cfg(any(test, feature = "proptest-impl"))]
637 pub fn assert_frontier_eq(&self, other: &Self) {
638 // It's technically ok for the cached root not to be preserved,
639 // but it can result in expensive cryptographic operations,
640 // so we fail the tests if it happens.
641 assert_eq!(self.cached_root(), other.cached_root());
642
643 // Check the data in the internal data structure
644 assert_eq!(self.inner, other.inner);
645
646 // Check the RPC serialization format (not the same as the Zebra database format)
647 assert_eq!(self.to_rpc_bytes(), other.to_rpc_bytes());
648 }
649
650 /// Serializes [`Self`] to a format matching `zcashd`'s RPCs.
651 pub fn to_rpc_bytes(&self) -> Vec<u8> {
652 // Convert the tree from [`Frontier`](incrementalmerkletree::frontier::Frontier) to
653 // [`CommitmentTree`](merkle_tree::CommitmentTree).
654 let tree = incrementalmerkletree::frontier::CommitmentTree::from_frontier(&self.inner);
655
656 let mut rpc_bytes = vec![];
657
658 zcash_primitives::merkle_tree::write_commitment_tree(&tree, &mut rpc_bytes)
659 .expect("serializable tree");
660
661 rpc_bytes
662 }
663}
664
665impl Clone for NoteCommitmentTree {
666 /// Clones the inner tree, and creates a new [`RwLock`](std::sync::RwLock)
667 /// with the cloned root data.
668 fn clone(&self) -> Self {
669 let cached_root = self.cached_root();
670
671 Self {
672 inner: self.inner.clone(),
673 cached_root: std::sync::RwLock::new(cached_root),
674 }
675 }
676}
677
678impl Default for NoteCommitmentTree {
679 fn default() -> Self {
680 Self {
681 inner: incrementalmerkletree::frontier::Frontier::empty(),
682 cached_root: Default::default(),
683 }
684 }
685}
686
687impl Eq for NoteCommitmentTree {}
688
689impl PartialEq for NoteCommitmentTree {
690 fn eq(&self, other: &Self) -> bool {
691 if let (Some(root), Some(other_root)) = (self.cached_root(), other.cached_root()) {
692 // Use cached roots if available
693 root == other_root
694 } else {
695 // Avoid expensive root recalculations which use multiple cryptographic hashes
696 self.inner == other.inner
697 }
698 }
699}
700
701impl From<Vec<jubjub::Fq>> for NoteCommitmentTree {
702 /// Computes the tree from a whole bunch of note commitments at once.
703 fn from(values: Vec<jubjub::Fq>) -> Self {
704 let mut tree = Self::default();
705
706 if values.is_empty() {
707 return tree;
708 }
709
710 for cm_u in values {
711 let _ = tree.append(cm_u);
712 }
713
714 tree
715 }
716}