zebra_rpc/
queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! Transaction Queue.
//!
//! All transactions that are sent from RPC methods should be added to this queue for retries.
//! Transactions can fail to be inserted to the mempool immediately by different reasons,
//! like having not mined utxos.
//!
//! The [`Queue`] is just an `IndexMap` of transactions with insertion date.
//! We use this data type because we want the transactions in the queue to be in order.
//! The [`Runner`] component will do the processing in it's [`Runner::run()`] method.

use std::{collections::HashSet, sync::Arc};

use chrono::Duration;
use indexmap::IndexMap;
use tokio::{
    sync::broadcast::{self, error::TryRecvError},
    time::Instant,
};

use tower::{Service, ServiceExt};

use zebra_chain::{
    block::Height,
    chain_tip::ChainTip,
    parameters::{Network, NetworkUpgrade},
    transaction::{Transaction, UnminedTx, UnminedTxId},
};
use zebra_node_services::{
    mempool::{Gossip, Request, Response},
    BoxError,
};

use zebra_state::{MinedTx, ReadRequest, ReadResponse};

#[cfg(test)]
mod tests;

/// The approximate target number of blocks a transaction can be in the queue.
const NUMBER_OF_BLOCKS_TO_EXPIRE: i64 = 5;

/// Size of the queue and channel.
pub const CHANNEL_AND_QUEUE_CAPACITY: usize = 20;

/// The height to use in spacing calculation if we don't have a chain tip.
const NO_CHAIN_TIP_HEIGHT: Height = Height(1);

#[derive(Clone, Debug)]
/// The queue is a container of transactions that are going to be
/// sent to the mempool again.
pub struct Queue {
    transactions: IndexMap<UnminedTxId, (Arc<Transaction>, Instant)>,
}

#[derive(Debug)]
/// The runner will make the processing of the transactions in the queue.
pub struct Runner {
    queue: Queue,
    receiver: broadcast::Receiver<UnminedTx>,
    tip_height: Height,
}

impl Queue {
    /// Start a new queue
    pub fn start() -> (Runner, broadcast::Sender<UnminedTx>) {
        let (sender, receiver) = broadcast::channel(CHANNEL_AND_QUEUE_CAPACITY);

        let queue = Queue {
            transactions: IndexMap::new(),
        };

        let runner = Runner {
            queue,
            receiver,
            tip_height: Height(0),
        };

        (runner, sender)
    }

    /// Get the transactions in the queue.
    pub fn transactions(&self) -> IndexMap<UnminedTxId, (Arc<Transaction>, Instant)> {
        self.transactions.clone()
    }

    /// Insert a transaction to the queue.
    pub fn insert(&mut self, unmined_tx: UnminedTx) {
        self.transactions
            .insert(unmined_tx.id, (unmined_tx.transaction, Instant::now()));

        // remove if queue is over capacity
        if self.transactions.len() > CHANNEL_AND_QUEUE_CAPACITY {
            self.remove_first();
        }
    }

    /// Remove a transaction from the queue.
    pub fn remove(&mut self, unmined_id: UnminedTxId) {
        self.transactions.swap_remove(&unmined_id);
    }

    /// Remove the oldest transaction from the queue.
    pub fn remove_first(&mut self) {
        self.transactions.shift_remove_index(0);
    }
}

impl Runner {
    /// Get the queue transactions as a `HashSet` of unmined ids.
    fn transactions_as_hash_set(&self) -> HashSet<UnminedTxId> {
        let transactions = self.queue.transactions();
        transactions.iter().map(|t| *t.0).collect()
    }

    /// Get the queue transactions as a `Vec` of transactions.
    fn transactions_as_vec(&self) -> Vec<Arc<Transaction>> {
        let transactions = self.queue.transactions();
        transactions.iter().map(|t| t.1 .0.clone()).collect()
    }

    /// Update the `tip_height` field with a new height.
    pub fn update_tip_height(&mut self, height: Height) {
        self.tip_height = height;
    }

    /// Retry sending to mempool if needed.
    ///
    /// Creates a loop that will run each time a new block is mined.
    /// In this loop, get the transactions that are in the queue and:
    /// - Check if they are now in the mempool and if so, delete the transaction from the queue.
    /// - Check if the transaction is now part of a block in the state and if so,
    ///   delete the transaction from the queue.
    /// - With the transactions left in the queue, retry sending them to the mempool ignoring
    ///   the result of this operation.
    ///
    /// Additionally, each iteration of the above loop, will receive and insert to the queue
    /// transactions that are pending in the channel.
    pub async fn run<Mempool, State, Tip>(
        mut self,
        mempool: Mempool,
        state: State,
        tip: Tip,
        network: Network,
    ) where
        Mempool: Service<Request, Response = Response, Error = BoxError> + Clone + 'static,
        State: Service<ReadRequest, Response = ReadResponse, Error = zebra_state::BoxError>
            + Clone
            + Send
            + Sync
            + 'static,
        Tip: ChainTip + Clone + Send + Sync + 'static,
    {
        loop {
            // if we don't have a chain use `NO_CHAIN_TIP_HEIGHT` to get block spacing
            let tip_height = match tip.best_tip_height() {
                Some(height) => height,
                _ => NO_CHAIN_TIP_HEIGHT,
            };

            // get spacing between blocks
            let spacing = NetworkUpgrade::target_spacing_for_height(&network, tip_height);

            // sleep until the next block
            tokio::time::sleep(spacing.to_std().expect("should never be less than zero")).await;

            // get transactions from the channel
            loop {
                let tx = match self.receiver.try_recv() {
                    Ok(tx) => tx,
                    Err(TryRecvError::Empty) => break,
                    Err(TryRecvError::Lagged(skipped_count)) => {
                        tracing::info!("sendrawtransaction queue was full: skipped {skipped_count} transactions");
                        continue;
                    }
                    Err(TryRecvError::Closed) => {
                        tracing::info!(
                            "sendrawtransaction queue was closed: is Zebra shutting down?"
                        );
                        return;
                    }
                };

                self.queue.insert(tx.clone());
            }

            // skip some work if stored tip height is the same as the one arriving
            // TODO: check tip block hashes instead, so we always retry when there is a chain fork (these are rare)
            if tip_height != self.tip_height {
                // update the chain tip
                self.update_tip_height(tip_height);

                if !self.queue.transactions().is_empty() {
                    // remove what is expired
                    self.remove_expired(spacing);

                    // remove if any of the queued transactions is now in the mempool
                    let in_mempool =
                        Self::check_mempool(mempool.clone(), self.transactions_as_hash_set()).await;
                    self.remove_committed(in_mempool);

                    // remove if any of the queued transactions is now in the state
                    let in_state =
                        Self::check_state(state.clone(), self.transactions_as_hash_set()).await;
                    self.remove_committed(in_state);

                    // retry what is left in the queue
                    let _retried = Self::retry(mempool.clone(), self.transactions_as_vec()).await;
                }
            }
        }
    }

    /// Remove transactions that are expired according to number of blocks and current spacing between blocks.
    fn remove_expired(&mut self, spacing: Duration) {
        // Have some extra time to to make sure we re-submit each transaction `NUMBER_OF_BLOCKS_TO_EXPIRE`
        // times, as the main loop also takes some time to run.
        let extra_time = Duration::seconds(5);

        let duration_to_expire =
            Duration::seconds(NUMBER_OF_BLOCKS_TO_EXPIRE * spacing.num_seconds()) + extra_time;
        let transactions = self.queue.transactions();
        let now = Instant::now();

        for tx in transactions.iter() {
            let tx_time =
                tx.1 .1
                    .checked_add(
                        duration_to_expire
                            .to_std()
                            .expect("should never be less than zero"),
                    )
                    .expect("this is low numbers, should always be inside bounds");

            if now > tx_time {
                self.queue.remove(*tx.0);
            }
        }
    }

    /// Remove transactions from the queue that had been inserted to the state or the mempool.
    fn remove_committed(&mut self, to_remove: HashSet<UnminedTxId>) {
        for r in to_remove {
            self.queue.remove(r);
        }
    }

    /// Check the mempool for given transactions.
    ///
    /// Returns transactions that are in the mempool.
    async fn check_mempool<Mempool>(
        mempool: Mempool,
        transactions: HashSet<UnminedTxId>,
    ) -> HashSet<UnminedTxId>
    where
        Mempool: Service<Request, Response = Response, Error = BoxError> + Clone + 'static,
    {
        let mut response = HashSet::new();

        if !transactions.is_empty() {
            let request = Request::TransactionsById(transactions);

            // ignore any error coming from the mempool
            let mempool_response = mempool.oneshot(request).await;
            if let Ok(Response::Transactions(txs)) = mempool_response {
                for tx in txs {
                    response.insert(tx.id);
                }
            }
        }

        response
    }

    /// Check the state for given transactions.
    ///
    /// Returns transactions that are in the state.
    async fn check_state<State>(
        state: State,
        transactions: HashSet<UnminedTxId>,
    ) -> HashSet<UnminedTxId>
    where
        State: Service<ReadRequest, Response = ReadResponse, Error = zebra_state::BoxError>
            + Clone
            + Send
            + Sync
            + 'static,
    {
        let mut response = HashSet::new();

        for t in transactions {
            let request = ReadRequest::Transaction(t.mined_id());

            // ignore any error coming from the state
            let state_response = state.clone().oneshot(request).await;
            if let Ok(ReadResponse::Transaction(Some(MinedTx { tx, .. }))) = state_response {
                response.insert(tx.unmined_id());
            }
        }

        response
    }

    /// Retry sending given transactions to mempool.
    ///
    /// Returns the transaction ids that were retried.
    async fn retry<Mempool>(
        mempool: Mempool,
        transactions: Vec<Arc<Transaction>>,
    ) -> HashSet<UnminedTxId>
    where
        Mempool: Service<Request, Response = Response, Error = BoxError> + Clone + 'static,
    {
        let mut retried = HashSet::new();

        for tx in transactions {
            let unmined = UnminedTx::from(tx);
            let gossip = Gossip::Tx(unmined.clone());
            let request = Request::Queue(vec![gossip]);

            // Send to mempool and ignore any error
            let _ = mempool.clone().oneshot(request).await;

            // return what we retried but don't delete from the queue,
            // we might retry again in a next call.
            retried.insert(unmined.id);
        }
        retried
    }
}