zebra_rpc/queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
//! Transaction Queue.
//!
//! All transactions that are sent from RPC methods should be added to this queue for retries.
//! Transactions can fail to be inserted to the mempool immediately by different reasons,
//! like having not mined utxos.
//!
//! The [`Queue`] is just an `IndexMap` of transactions with insertion date.
//! We use this data type because we want the transactions in the queue to be in order.
//! The [`Runner`] component will do the processing in it's [`Runner::run()`] method.
use std::{collections::HashSet, sync::Arc};
use chrono::Duration;
use indexmap::IndexMap;
use tokio::{
sync::broadcast::{self, error::TryRecvError},
time::Instant,
};
use tower::{Service, ServiceExt};
use zebra_chain::{
block::Height,
chain_tip::ChainTip,
parameters::{Network, NetworkUpgrade},
transaction::{Transaction, UnminedTx, UnminedTxId},
};
use zebra_node_services::{
mempool::{Gossip, Request, Response},
BoxError,
};
use zebra_state::{MinedTx, ReadRequest, ReadResponse};
#[cfg(test)]
mod tests;
/// The approximate target number of blocks a transaction can be in the queue.
const NUMBER_OF_BLOCKS_TO_EXPIRE: i64 = 5;
/// Size of the queue and channel.
pub const CHANNEL_AND_QUEUE_CAPACITY: usize = 20;
/// The height to use in spacing calculation if we don't have a chain tip.
const NO_CHAIN_TIP_HEIGHT: Height = Height(1);
#[derive(Clone, Debug)]
/// The queue is a container of transactions that are going to be
/// sent to the mempool again.
pub struct Queue {
transactions: IndexMap<UnminedTxId, (Arc<Transaction>, Instant)>,
}
#[derive(Debug)]
/// The runner will make the processing of the transactions in the queue.
pub struct Runner {
queue: Queue,
receiver: broadcast::Receiver<UnminedTx>,
tip_height: Height,
}
impl Queue {
/// Start a new queue
pub fn start() -> (Runner, broadcast::Sender<UnminedTx>) {
let (sender, receiver) = broadcast::channel(CHANNEL_AND_QUEUE_CAPACITY);
let queue = Queue {
transactions: IndexMap::new(),
};
let runner = Runner {
queue,
receiver,
tip_height: Height(0),
};
(runner, sender)
}
/// Get the transactions in the queue.
pub fn transactions(&self) -> IndexMap<UnminedTxId, (Arc<Transaction>, Instant)> {
self.transactions.clone()
}
/// Insert a transaction to the queue.
pub fn insert(&mut self, unmined_tx: UnminedTx) {
self.transactions
.insert(unmined_tx.id, (unmined_tx.transaction, Instant::now()));
// remove if queue is over capacity
if self.transactions.len() > CHANNEL_AND_QUEUE_CAPACITY {
self.remove_first();
}
}
/// Remove a transaction from the queue.
pub fn remove(&mut self, unmined_id: UnminedTxId) {
self.transactions.swap_remove(&unmined_id);
}
/// Remove the oldest transaction from the queue.
pub fn remove_first(&mut self) {
self.transactions.shift_remove_index(0);
}
}
impl Runner {
/// Get the queue transactions as a `HashSet` of unmined ids.
fn transactions_as_hash_set(&self) -> HashSet<UnminedTxId> {
let transactions = self.queue.transactions();
transactions.iter().map(|t| *t.0).collect()
}
/// Get the queue transactions as a `Vec` of transactions.
fn transactions_as_vec(&self) -> Vec<Arc<Transaction>> {
let transactions = self.queue.transactions();
transactions.iter().map(|t| t.1 .0.clone()).collect()
}
/// Update the `tip_height` field with a new height.
pub fn update_tip_height(&mut self, height: Height) {
self.tip_height = height;
}
/// Retry sending to mempool if needed.
///
/// Creates a loop that will run each time a new block is mined.
/// In this loop, get the transactions that are in the queue and:
/// - Check if they are now in the mempool and if so, delete the transaction from the queue.
/// - Check if the transaction is now part of a block in the state and if so,
/// delete the transaction from the queue.
/// - With the transactions left in the queue, retry sending them to the mempool ignoring
/// the result of this operation.
///
/// Additionally, each iteration of the above loop, will receive and insert to the queue
/// transactions that are pending in the channel.
pub async fn run<Mempool, State, Tip>(
mut self,
mempool: Mempool,
state: State,
tip: Tip,
network: Network,
) where
Mempool: Service<Request, Response = Response, Error = BoxError> + Clone + 'static,
State: Service<ReadRequest, Response = ReadResponse, Error = zebra_state::BoxError>
+ Clone
+ Send
+ Sync
+ 'static,
Tip: ChainTip + Clone + Send + Sync + 'static,
{
loop {
// if we don't have a chain use `NO_CHAIN_TIP_HEIGHT` to get block spacing
let tip_height = match tip.best_tip_height() {
Some(height) => height,
_ => NO_CHAIN_TIP_HEIGHT,
};
// get spacing between blocks
let spacing = NetworkUpgrade::target_spacing_for_height(&network, tip_height);
// sleep until the next block
tokio::time::sleep(spacing.to_std().expect("should never be less than zero")).await;
// get transactions from the channel
loop {
let tx = match self.receiver.try_recv() {
Ok(tx) => tx,
Err(TryRecvError::Empty) => break,
Err(TryRecvError::Lagged(skipped_count)) => {
tracing::info!("sendrawtransaction queue was full: skipped {skipped_count} transactions");
continue;
}
Err(TryRecvError::Closed) => {
tracing::info!(
"sendrawtransaction queue was closed: is Zebra shutting down?"
);
return;
}
};
self.queue.insert(tx.clone());
}
// skip some work if stored tip height is the same as the one arriving
// TODO: check tip block hashes instead, so we always retry when there is a chain fork (these are rare)
if tip_height != self.tip_height {
// update the chain tip
self.update_tip_height(tip_height);
if !self.queue.transactions().is_empty() {
// remove what is expired
self.remove_expired(spacing);
// remove if any of the queued transactions is now in the mempool
let in_mempool =
Self::check_mempool(mempool.clone(), self.transactions_as_hash_set()).await;
self.remove_committed(in_mempool);
// remove if any of the queued transactions is now in the state
let in_state =
Self::check_state(state.clone(), self.transactions_as_hash_set()).await;
self.remove_committed(in_state);
// retry what is left in the queue
let _retried = Self::retry(mempool.clone(), self.transactions_as_vec()).await;
}
}
}
}
/// Remove transactions that are expired according to number of blocks and current spacing between blocks.
fn remove_expired(&mut self, spacing: Duration) {
// Have some extra time to to make sure we re-submit each transaction `NUMBER_OF_BLOCKS_TO_EXPIRE`
// times, as the main loop also takes some time to run.
let extra_time = Duration::seconds(5);
let duration_to_expire =
Duration::seconds(NUMBER_OF_BLOCKS_TO_EXPIRE * spacing.num_seconds()) + extra_time;
let transactions = self.queue.transactions();
let now = Instant::now();
for tx in transactions.iter() {
let tx_time =
tx.1 .1
.checked_add(
duration_to_expire
.to_std()
.expect("should never be less than zero"),
)
.expect("this is low numbers, should always be inside bounds");
if now > tx_time {
self.queue.remove(*tx.0);
}
}
}
/// Remove transactions from the queue that had been inserted to the state or the mempool.
fn remove_committed(&mut self, to_remove: HashSet<UnminedTxId>) {
for r in to_remove {
self.queue.remove(r);
}
}
/// Check the mempool for given transactions.
///
/// Returns transactions that are in the mempool.
async fn check_mempool<Mempool>(
mempool: Mempool,
transactions: HashSet<UnminedTxId>,
) -> HashSet<UnminedTxId>
where
Mempool: Service<Request, Response = Response, Error = BoxError> + Clone + 'static,
{
let mut response = HashSet::new();
if !transactions.is_empty() {
let request = Request::TransactionsById(transactions);
// ignore any error coming from the mempool
let mempool_response = mempool.oneshot(request).await;
if let Ok(Response::Transactions(txs)) = mempool_response {
for tx in txs {
response.insert(tx.id);
}
}
}
response
}
/// Check the state for given transactions.
///
/// Returns transactions that are in the state.
async fn check_state<State>(
state: State,
transactions: HashSet<UnminedTxId>,
) -> HashSet<UnminedTxId>
where
State: Service<ReadRequest, Response = ReadResponse, Error = zebra_state::BoxError>
+ Clone
+ Send
+ Sync
+ 'static,
{
let mut response = HashSet::new();
for t in transactions {
let request = ReadRequest::Transaction(t.mined_id());
// ignore any error coming from the state
let state_response = state.clone().oneshot(request).await;
if let Ok(ReadResponse::Transaction(Some(MinedTx { tx, .. }))) = state_response {
response.insert(tx.unmined_id());
}
}
response
}
/// Retry sending given transactions to mempool.
///
/// Returns the transaction ids that were retried.
async fn retry<Mempool>(
mempool: Mempool,
transactions: Vec<Arc<Transaction>>,
) -> HashSet<UnminedTxId>
where
Mempool: Service<Request, Response = Response, Error = BoxError> + Clone + 'static,
{
let mut retried = HashSet::new();
for tx in transactions {
let unmined = UnminedTx::from(tx);
let gossip = Gossip::Tx(unmined.clone());
let request = Request::Queue(vec![gossip]);
// Send to mempool and ignore any error
let _ = mempool.clone().oneshot(request).await;
// return what we retried but don't delete from the queue,
// we might retry again in a next call.
retried.insert(unmined.id);
}
retried
}
}